已知橢圓數(shù)學公式的離心率為數(shù)學公式,長軸長為2數(shù)學公式
(1)求橢圓的方程;
(2)試直線y=kx+1交橢圓于不同的兩點A、B,以AB為直徑的圓恰過原點O,求直線方程.

解:(1)設橢圓的半焦距為c,
∵橢圓的離心率為,長軸長為2
,

∵a2=b2+c2
∴b=1 (2分)
∴所求橢圓方程為 (4分)
(2)設A(x1,y1),B(x2,y2),

消去y并整理得(1+3k2)x2+6kx=0
則△=(6k)2-4(1+3k2)×0>0,
解得k≠0 (5分)
,x1x2=0 (8分)
∵以AB為直徑的圓恰過原點O

∴x1x2+y1y2=x1x2+(kx1+1)(kx2+1)=(1+k2)x1x2+k(x1+x2)+1=(10分).

∴直線方程為(12分)
分析:(1)根據(jù)橢圓的幾何性質(zhì),求出幾何量,即可得到橢圓的方程;
(2)直線方程與橢圓方程聯(lián)立,利用韋達定理結(jié)合以AB為直徑的圓恰過原點O,求得切線向量,即可求得直線方程.
點評:本題重點考查橢圓的標準方程,考查直線與橢圓的位置關系,解題的關鍵是借助于韋達定理,將以AB為直徑的圓恰過原點O,轉(zhuǎn)化為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案