精英家教網 > 高中數學 > 題目詳情

求滿足條件{x|x2+1=0}?M⊆{x|x2-1=0}的集合M的個數是________.

3
分析:由題意,可判斷出集合M是集合{-1,1}的非空子集,由此易得出集合M的個數
解答:由于{x|x2+1=0}=∅,{x|x2-1=0}={-1,1}
又{x|x2+1=0}?M⊆{x|x2-1=0}
所以集合M是集合{-1,1}的非空子集,故集合M的個數為3
故答案為3
點評:本題考查集合的包含關系及應用,解答的關鍵是確定出集合M的類型
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求滿足條件{x|x2+1=0}?M⊆{x|x2-1=0}的集合M的個數是
3
3

查看答案和解析>>

科目:高中數學 來源:新課標教材全解高中數學人教A版必修1 人教A版 題型:044

求滿足條件{x|x2+1=0}M{x|x2-1=0}的集合M的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

求滿足條件{x|x2+1=0}M{x|x2-1=0}的集合M的個數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

求滿足條件{x|x2+1=0}?M⊆{x|x2-1=0}的集合M的個數是______.

查看答案和解析>>

同步練習冊答案