15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2+3,x≤1}\\{{x}^{\frac{1}{2}},x>1}\end{array}\right.$,則f[f(-1)]的值為2.

分析 根據(jù)分段函數(shù)的表達式,代入求解即可.

解答 解:f(-1)=1+3=4,f(4)=4${\;}^{\frac{1}{2}}$=$\sqrt{2}=2$,
故f[f(-1)]=2,
故答案為:2.

點評 本題主要考查函數(shù)值的計算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對于函數(shù)f(x)=$\frac{a}{2}$-$\frac{{2}^{x}}{{2}^{x}+1}$(a∈R).
(1)探討函數(shù)f(x)的單調(diào)性;
(2)是否存在實數(shù)a,使函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若存在實數(shù)m,n,使得$\left\{\begin{array}{l}{\frac{1}{{e}^{x}}-\frac{a}{x}≥0}\\{x>0}\end{array}\right.$的解集為[m,n],則a的取值范圍為( 。
A.($\frac{1}{{e}^{x}}$,e)B.(0,$\frac{1}{{e}^{x}}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知滿足$\left\{{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}}\right.$的(x,y)使x2+(y-1)2≤m恒成立,則m的取值范圍是( 。
A.m≥1B.$m≥\sqrt{2}$C.m≥2D.$m≥\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+2,x≥3}\\{{2}^{x},x<3}\end{array}\right.$,若f(a)=4,則a的值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A=$\{x|\frac{3-2x}{x+2}>-1\}$,
(Ⅰ)若B⊆A,B={x|m+1<x<2m-1},求實數(shù)m的取值范圍;
(Ⅱ)若A⊆B,B={x|m-6<x<2m-1},求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)=|2x-2|+1,g(x)=x2+2x-$\frac{1}{2}$.
(1)解不等式f(x)≥3-x;
(2)若對?x∈R,$\frac{1}{2}$f(x)+|x+1|>g(m)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax(a>0且a≠0)經(jīng)過點(2,4).
(1)求a的值;
(2)畫出函數(shù)g(x)=a|x|圖象,并寫出該函數(shù)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[0,1]上單調(diào)遞增,設(shè)a=f(3),b=f(1.2),c=f(2),則a,b,c大小關(guān)系是( 。
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

同步練習(xí)冊答案