精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C的離心率為,且過點A21).

1)求C的方程:

2)點M,NC上,且AMAN,ADMN,D為垂足.證明:存在定點Q,使得|DQ|為定值.

【答案】(1);(2)詳見解析.

【解析】

(1)由題意得到關于a,b,c的方程組,求解方程組即可確定橢圓方程.

(2)設出點M,N的坐標,在斜率存在時設方程為, 聯立直線方程與橢圓方程,根據已知條件,已得到m,k的關系,進而得直線MN恒過定點,在直線斜率不存在時要單獨驗證,然后結合直角三角形的性質即可確定滿足題意的點Q的位置.

(1)由題意可得:,解得:,故橢圓方程為:.

(2)設點.

因為AMAN,∴,即,

當直線MN的斜率存在時,設方程為,如圖1.

代入橢圓方程消去并整理得:,

②,

根據,代入①整理可得:

將②代入,,

整理化簡得,

不在直線上,∴

,

于是MN的方程為

所以直線過定點直線過定點.

當直線MN的斜率不存在時,可得,如圖2.

代入,

結合,解得,

此時直線MN過點,

由于AE為定值,且△ADE為直角三角形,AE為斜邊,

所以AE中點Q滿足為定值(AE長度的一半.

由于,故由中點坐標公式可得.

故存在點,使得|DQ|為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將某公司200天的日銷售收入(單位:萬元)統(tǒng)計如下表(1)所示,

日銷售收入

頻數

12

28

36

54

50

20

頻率

表(1)

1)完成上述頻率分布表,并估計公司這200天的日均銷售收入(同一組中的數據用該組所在區(qū)間的中點值代表);

2)已知該公司2020年第一、二季度的日銷售收入如下表(2)所示,第三季度的日銷售收入及其頻率可用表(1)中的數據近似代替,且在2020年,當公司日銷售收入為時,員工的日績效為100元,當公司日銷售收入為時,員工的日績效為200元,當公司日銷售收入為時,員工的日績效為300.以頻率估計概率.

①若在第三季度某員工的工作日中隨機抽取2天,記該員工2天的績效之和為,求的分布列以及數學期望;

②若每個員工每個季度的工作日為50天,估計2020年前三個季度每個員工獲得的績效的總額.

日銷售收入

頻率

0.2

0.3

0.2

0.1

0.1

0.1

表(2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數方程為為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.曲線的極坐標方程為,曲線與曲線的交線為直線

1)求直線和曲線的直角坐標方程;

2)直線軸交于點,與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O為原點,拋物線的準線與y軸的交點為H,P為拋物線C上橫坐標為4的點,已知點P到準線的距離為5.

1)求C的方程;

2)過C的焦點F作直線l與拋物線C交于A,B兩點,若以AH為直徑的圓過B,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學開展勞動實習,學生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BCDG,垂足為C,tanODC=,EF=12 cmDE=2 cm,A到直線DEEF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,AB//CD,是以為斜邊的等腰直角三角形,且平面平面ABCD,點F滿足,.

1)試探究為何值時,CE//平面BDF,并給予證明;

2)在(1)的條件下,求直線AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左焦點,點在橢圓.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)經過圓上一動點作橢圓的兩條切線,切點分別記為,,直線,分別與圓相交于異于點兩點.

i)當直線,的斜率都存在時,記直線,的斜率分別為.求證:;

ii)求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】古希臘數學家阿波羅尼奧斯發(fā)現:平面上到兩定點,距離之比為常數的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內運動,則點所形成的阿氏圓的半徑為________;若點在長方體內部運動,為棱的中點,的中點,則三棱錐的體積的最小值為___________

查看答案和解析>>

同步練習冊答案