拋物線y=
1
a
x2
的焦點坐標(biāo)為( 。
A、(0,-
a
4
)
B、(0,
a
4
)
C、(
a
4
,0)
D、(
1
4a
,0)
考點:拋物線的標(biāo)準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用拋物線的簡單性質(zhì)求解.
解答: 解:∵拋物線y=
1
a
x2
的標(biāo)準方程為x2=ay,
∴拋物線y=
1
a
x2
的焦點坐標(biāo)為(0,
a
4
).
故選:B.
點評:本題考查拋物線的焦點坐標(biāo)的求法,是基礎(chǔ)題,解題時要認真審題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b為正實數(shù),直線y=x-a與曲線y=ln(x+b)相切,則
a2
2+b
的取值范圍是( 。
A、(0,
1
2
B、(0,1)
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴重擁堵.早高峰時段(T≥3),從貴陽市交通指揮中心隨機選取了二環(huán)以內(nèi)50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(1)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時的中位數(shù)和平均數(shù)
(2)據(jù)此直方圖求出早高峰二環(huán)以內(nèi)的3個路段至少有兩個嚴重擁堵的概率是多少?
(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘;中度擁堵為45分鐘;嚴重擁堵為60分鐘,求此人所用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)a,b,c滿足
1
a
+
4
b
+
9
c
36
a+b+c
,則
2b+3c
a+b+c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若關(guān)于x的不等式f(x)≥m2-
3
4
m有解,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-2ax+1在區(qū)間[-1,2]上存在反函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(πx),若存在x0∈R,使得對任意的x∈R,都有f(x)≤f(x0)成立.則關(guān)于m的不等式m2+m-f(x0)>0的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x-2y+k=0在兩坐標(biāo)軸上的截距之和為2,則實數(shù)k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|2≤x<5},B={x|3x-7≥8-2x},則(∁RA)∩B=
 

查看答案和解析>>

同步練習(xí)冊答案