10.若偶函數(shù)f(x)在[1,+∞)上是減函數(shù),則下列關系式中成立的是( 。
A.$f(2)<f(-\frac{3}{2})<f(-1)$B.$f(-\frac{3}{2})<f(-1)<f(2)$C.$f(2)<f(-1)<f(-\frac{3}{2})$D.$f(-1)<f(-\frac{3}{2})<f(2)$

分析 由f(x)為偶函數(shù)即可得到$f(-\frac{3}{2})=f(\frac{3}{2}),f(-1)=f(1)$,而根據f(x)在[1,+∞)上為減函數(shù)即可比較$f(2),f(\frac{3}{2}),f(1)$的大小關系,從而得出$f(2),f(-\frac{3}{2}),f(-1)$的大小關系,即得出正確選項.

解答 解:f(x)為偶函數(shù);
∴$f(-\frac{3}{2})=f(\frac{3}{2}),f(-1)=f(1)$;
又f(x)在[1,+∞)上是減函數(shù);
∴$f(2)<f(\frac{3}{2})<f(1)$;
即$f(2)<f(-\frac{3}{2})<f(-1)$.
故選A.

點評 考查偶函數(shù)的定義,減函數(shù)的定義,以及根據減函數(shù)定義比較函數(shù)值大小的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.設命題p:?x∈R,x2-ax+1≥0,命題q:?x>0,$\frac{{x}^{2}+1}{x}$<a,若(¬p)∨q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}滿足:${log_3}a{\;}_n+1={log_3}{a_{n+1}},({n∈{N^+}})$,且a2+a4+a6=9,則${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$的值為-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,則實數(shù)m的取值范圍為.( 。
A.[-2,1)B.[-2,1]C.[-2,-1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.研究函數(shù)$f(x)=\frac{{{x^2}+3}}{{{x^2}-4}}$的性質,并作出其圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y-29=0相切.
(1)求圓的方程;
(2)設直線kx-y+5=0與圓相交于A,B兩點,求實數(shù)k的取值范圍;
(3)在(2)的條件下,是否存在實數(shù)k,使得過點P(2,-4)的直線l垂直平分弦AB?若存在,求出實數(shù)k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.命題“?x>0,lnx>0”的否定是(  )
A.?x>0,lnx>0B.?x>0,lnx>0C.?x>0,lnx≥0D.?x>0,lnx≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓G的中心在平面直角坐標系的原點,離心率$e=\frac{1}{2}$,右焦點與圓C:x2+y2-2x-3=0的圓心重合.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設F1、F2是橢圓G的左焦點和右焦點,過F2的直線l:x=my+1與橢圓G相交于A、B兩點,請問△ABF1的內切圓M的面積是否存在最大值?若存在,求出這個最大值及直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.命題“若a>b,則ac>bc”(a,b,c都是實數(shù))與它的逆命題、否命題和逆否命題中,真命題的個數(shù)是( 。
A.4B.3C.2D.0

查看答案和解析>>

同步練習冊答案