在區(qū)間[-1,2]上隨即取一個(gè)數(shù)x,則x∈[0,1]的概率為        

分析:本題考查的知識點(diǎn)是幾何概型的意義,關(guān)鍵是要找出數(shù)軸上表示區(qū)間[0,1]的線段的長度及表示區(qū)間[-1,2]的線段長度,并代入幾何概型估算公式進(jìn)行求解.
解:在數(shù)軸上表示區(qū)間[0,1]的線段的長度為1;
示區(qū)間[-1,2]的線段長度為3
故在區(qū)間[-1,2]上隨即取一個(gè)數(shù)x,則x∈[0,1]的概率P=
故答案為:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某人有5把鑰匙,其中2把能打開門,現(xiàn)隨機(jī)取1把鑰匙試著開門,不能開門就扔掉,現(xiàn)采用隨機(jī)模擬的方法估計(jì)第三次才能打開門的概率:先由計(jì)算器產(chǎn)生1~5之間的整數(shù)隨機(jī)數(shù),1,2表示能打開門,3,4,5表示打不開門,再以每三個(gè)數(shù)一組,代表三次開門的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),453,254,341,134,543,623,452,324,534,435,635,314,245,
531,351,354,345,413,425,653據(jù)此估計(jì),該人第三次才打開門的概率(    )
A  0.2      B.  0.25     C.  0.15        D.   0.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6點(diǎn)—8點(diǎn)之間把報(bào)紙送到你家,你每天離家去工作的時(shí)間在早上7點(diǎn)—9點(diǎn)之間 ,求你離家前不能看到報(bào)紙(稱事件A)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人有5把鑰匙,其中只有1把能打開某一扇門,今任取一把試開,不能打開的除去,求打開此門所需試開次數(shù)的數(shù)學(xué)期望和方差.                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)、當(dāng)時(shí),用函數(shù)單調(diào)性定義求的單調(diào)遞減區(qū)間(6分)
(2)、若連續(xù)擲兩次骰子(骰子六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6)得到的點(diǎn)數(shù)分別作為,求恒成立的概率;  (8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分分)
桌面上有兩顆均勻的骰子(個(gè)面上分別標(biāo)有數(shù)字).將桌面上骰子全部拋擲在桌面上,然后拿掉那些朝上點(diǎn)數(shù)為奇數(shù)的骰子,如果桌面上沒有了骰子,停止拋擲,如果桌面上還有骰子,繼續(xù)拋擲桌面上的剩余骰子. 記拋擲兩次之內(nèi)(含兩次)去掉的骰子的顆數(shù)為.
(Ⅰ)求;    
(Ⅱ)求的分布列及期望 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從1,2,……,9這九個(gè)數(shù)中,隨機(jī)抽取3個(gè)不同的數(shù),則這3個(gè)數(shù)的和為偶數(shù)的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

擲一個(gè)骰子向上的點(diǎn)數(shù)為3的倍數(shù)的概率是                       (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋擲兩顆質(zhì)量均勻的骰子各一次,向上的點(diǎn)數(shù)之和為7時(shí),其中有一個(gè)的點(diǎn)數(shù)是3的概率是______________

查看答案和解析>>

同步練習(xí)冊答案