已知拋物線的焦點為,過點的直線相交于兩點,點關(guān)于軸的對稱點為.

(Ⅰ)證明:點在直線上;

(Ⅱ)設(shè),求的平分線與軸的交點坐標(biāo).

 

【答案】

(Ⅰ)解:設(shè),,的方程為,

 由

從而,.                               ………2分

直線的方程為,即,

 令,得,所以點在直線上.        …………6分

(Ⅱ)解:因為  ,

 故,解得,                    …………9分

 所以的方程為

 又由(Ⅰ)得 ,故直線的斜率為,

因而直線的方程為.                  ……12分

設(shè)的平分線與軸的交點為,

的距離分別為 ,,

,得,或(舍去),

所以的平分線與軸的交點為.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的焦點為,準(zhǔn)線為,點為拋物線C上的一點,且的外接圓圓心到準(zhǔn)線的距離為

(I)求拋物線C的方程;

(II)若圓F的方程為,過點P作圓F的2條切線分別交軸于點,求面積的最小值時的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知拋物線的焦點為,點,在拋物線上,且, 則有    (   )

A.                   B.

C.                  D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州市高三調(diào)研考試理數(shù) 題型:選擇題

已知拋物線的焦點為,關(guān)于原點的對稱點為軸的垂線交拋物線于兩點.有下列四個命題:①必為直角三角形;②不一定為直角三角形;③直線必與拋物線相切;④直線不一定與拋物線相切.其中正確的命題是

(A)①③             (B)①④             (C)②③                 (D)②④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題

已知拋物線的焦點為F,準(zhǔn)線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點A,且AK,垂足為K,則的面積是( 。

A 4     B        C       D 8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆海南省高二年級第一學(xué)期期末考試理科數(shù)學(xué)卷 題型:選擇題

已知拋物線的焦點為,點,在拋物線上,且,則有( 。

A.        B.

C.      D.

 

查看答案和解析>>

同步練習(xí)冊答案