【題目】已知函數(shù)的圖象與函數(shù)的圖象有三個不同的交點、,其中.給出下列四個結(jié)論: ①;②;③;④.其中,正確結(jié)論的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析:由題意,函數(shù)的圖象與函數(shù)的圖象有三個不同的交點,轉(zhuǎn)化為方程有三個不同的實數(shù)解,進而函數(shù)的圖象有三個不同的交點,利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性和極值,即可得到答案

詳解:由題意,函數(shù)的圖象與函數(shù)的圖象有三個不同的交點,

即方程,由三個不同的實數(shù)解,即有三個不同的實數(shù)解,

即函數(shù)的圖象有三個不同的交點,

又由,

時,,函數(shù)單調(diào)遞減;

時,,函數(shù)單調(diào)遞增,

其圖象如圖所示,且當時,,

要使得函數(shù)的圖象有三個不同的交點,則,所以①正確的;

時,即,解得,

所以當時,則 所以是正確的;

結(jié)合圖象可得,所以是正確的;

又由,整理得

又因為,所以,即,

結(jié)合可知,所以是錯誤的,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+kx+2y+k20,過點P1,﹣1)可作圓的兩條切線,則實數(shù)k的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P—ABC中,△PBC為等邊三角形,點O為BC的中點,AC⊥PB,平面PBC⊥平面ABC.

(1)求直線PB和平面ABC所成的角的大小;

(2)求證:平面PAC⊥平面PBC;

(3)已知E為PO的中點,F(xiàn)是AB上的點,AF=AB.若EF∥平面PAC,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認可.為了調(diào)查人們對這種交通方式的認可度,某同學(xué)從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調(diào)查了20名市民,得到了一個市民是否認可的樣本,具體數(shù)據(jù)如下列聯(lián)表

附:,

根據(jù)表中的數(shù)據(jù),下列說法中,正確的是(

A. 沒有95% 以上的把握認為“是否認可與城市的擁堵情況有關(guān)”

B. 有99% 以上的把握認為“是否認可與城市的擁堵情況有關(guān)”

C. 可以在犯錯誤的概率不超過0.01的前提下認為“是否認可與城市的擁堵情況有關(guān)”

D. 可以在犯錯誤的概率不超過0.025的前提下認為“是否認可與城市的擁堵情況有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)當時,討論函數(shù)的單調(diào)性;

(2)當時,若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校進行理科、文科數(shù)學(xué)成績對比,某次考試后,各隨機抽取100名同學(xué)的數(shù)學(xué)考試成績進行統(tǒng)計,其頻率分布表如下.

分組

頻數(shù)

頻率

分組

頻數(shù)

頻率

[135,150]

8

0.08

[135,150]

4

0.04

[120,135)

17

0.17

[120,135)

18

0.18

[105,120)

40

0.4

[105,120)

37

0.37

[90,105)

21

0.21

[90,105)

31

0.31

[75,90)

12

0. 12

[75,90)

7

0.07

[60,75)

2

0.02

[60,75)

3

0.03

總計

100

1

總計

100

1

理科 文科

(Ⅰ)根據(jù)數(shù)學(xué)成績的頻率分布表,求文科數(shù)學(xué)成績的中位數(shù)的估計值;(精確到0.01)

(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為數(shù)學(xué)成績與文理科有關(guān):

數(shù)學(xué)成績120分

數(shù)學(xué)成績<120分

合計

理科

文科

合計

200

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程是 (t是參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程為ρ=4cos(θ+ ).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為 ,圓C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過M且與圓C相切,求直線l的極坐標方程;
(2)過點P(0,m)且斜率為 的直線l'與圓C交于A,B兩點,若|PA||PB|=6,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案