【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為 ,圓C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過(guò)M且與圓C相切,求直線l的極坐標(biāo)方程;
(2)過(guò)點(diǎn)P(0,m)且斜率為 的直線l'與圓C交于A,B兩點(diǎn),若|PA||PB|=6,求實(shí)數(shù)m的值.
【答案】
(1)解:M的直角坐標(biāo)為(3,3),
圓C的直角坐標(biāo)方程為(x﹣1)2+y2=4,
設(shè)直線l:y﹣3=k(x﹣3),即l:kx﹣y﹣3k+3=0,
因?yàn)橹本l與圓C相切,所以 ,解得 ,
此時(shí)直線l的方程為5x﹣12y+21=0,
若直線l的斜率不存在時(shí),直線l的方程為x=3,
所以直線l的極坐標(biāo)方程為5ρcosθ﹣12ρsinθ+21=0或ρcosθ=3
(2)解:將直線l'的參數(shù)方程 (t為參數(shù)),
代入圓C的方程(x﹣1)2+y2=4,
得:t2+( m﹣1)t+m2﹣3=0,
= ,
設(shè)PA=t1,PB=t2,則 ,
因?yàn)閨PA||PB|=6,所以 ,
所以m2﹣3=±6,解得m=±3,
由△>0知,所求m的值為﹣3
【解析】(1)根據(jù)參數(shù)方程和極坐標(biāo)方程和普通方程的關(guān)系進(jìn)行轉(zhuǎn)化即可;(2)將直線方程代入圓的方程得到關(guān)于t的二次方程,根據(jù)判別式求出關(guān)于m的方程,解出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與函數(shù)的圖象有三個(gè)不同的交點(diǎn)、、,其中.給出下列四個(gè)結(jié)論: ①;②;③;④.其中,正確結(jié)論的個(gè)數(shù)有( )個(gè)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測(cè)量其身高,被測(cè)學(xué)生身高全部介于和之間,將測(cè)量結(jié)果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.
(1)請(qǐng)補(bǔ)全頻率分布直方圖并求第七組的頻率;
(2)估計(jì)該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);
(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,,事件,事件,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.
(Ⅰ)求證:CD⊥PD;
(Ⅱ)求證:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是等差數(shù)列,是其前項(xiàng)的和,且,則下列結(jié)論錯(cuò)誤的是( )
A. B. C. D. 與均為的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某理科考生參加自主招生面試,從道題中(道甲組題和道乙組題)不放回地依次任取道作答.
(1)求該考生在第一次抽到甲組題的條件下,第二次和第三次均抽到乙組題的概率;
(2)規(guī)定理科考生需作答道甲組題和道乙組題,該考生答對(duì)甲組題的概率均為,答對(duì)乙組題的概率均為,若每題答對(duì)得,否則得零分.現(xiàn)該生已抽到道題(道甲組題和道乙組題),求其所得總分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意的x∈R,都有f(﹣x)+f(x)=﹣6,且當(dāng)x≥0時(shí),f(x)=2x﹣4,定義在R上的函數(shù)g(x)=a(x﹣a)(x+a+1),兩函數(shù)同時(shí)滿足:x∈R,都有f(x)<0或g(x)<0;x∈(﹣∞,﹣1),f(x)g(x)<0,則實(shí)數(shù)a的取值范圍為( )
A.(﹣3,0)
B.
C.(﹣3,﹣1)
D.(﹣3,﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校參加某項(xiàng)競(jìng)賽僅有一個(gè)名額,結(jié)合平時(shí)訓(xùn)練成績(jī),甲、乙兩名學(xué)生進(jìn)入最后選拔,學(xué)校為此設(shè)計(jì)了如下選拔方案:設(shè)計(jì)6道測(cè)試題,若這6道題中,甲能正確解答其中的4道,乙能正確解答每個(gè)題目的概率均為.假設(shè)甲、乙兩名學(xué)生解答每道測(cè)試題都相互獨(dú)立,互不影響,現(xiàn)甲、乙從這6道測(cè)試題中分別隨機(jī)抽取3題進(jìn)行解答.
(1)求甲、乙兩名學(xué)生共答對(duì)2道測(cè)試題的概率;
(2)從數(shù)學(xué)期望和方差的角度分析,應(yīng)選拔哪個(gè)學(xué)生代表學(xué)校參加競(jìng)賽?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸一個(gè)端點(diǎn)到右焦點(diǎn)F的距離為2,且過(guò)點(diǎn) .
(1)求橢圓C的方程;
(2)設(shè)M,N為橢圓C上不同的兩點(diǎn),A,B分別為橢圓C上的左右頂點(diǎn),直線MN既不平行與坐標(biāo)軸,也不過(guò)橢圓C的右焦點(diǎn)F,若∠AFM=∠BFN,求證:直線MN過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com