設(shè)函數(shù)f(x)=(x+1)ln(x+1),若對(duì)所有的x≥0,都有f(x)≥ax成立,求實(shí)數(shù)a的取值范圍.
(-∞,1]
g(x)=(x+1)ln(x+1)-ax,對(duì)函數(shù)g(x)求導(dǎo)數(shù):g′(x)=ln(x+1)+1-a
g′(x)=0,解得xea-1-1,
(1)當(dāng)a≤1時(shí),對(duì)所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函數(shù),
g(0)=0,所以對(duì)x≥0,都有g(x)≥g(0),
即當(dāng)a≤1時(shí),對(duì)于所有x≥0,都有 f(x)≥ax
(2)當(dāng)a>1時(shí),對(duì)于0<xea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是減函數(shù),
g(0)=0,所以對(duì)0<xea-1-1,都有g(x)<g(0),
即當(dāng)a>1時(shí),不是對(duì)所有的x≥0,都有f(x)≥ax成立.
綜上,a的取值范圍是(-∞,1].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)   求f(x)的單調(diào)區(qū)間;
(2)   證明:lnx<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
⑴ 設(shè).試證明在區(qū)間  內(nèi)是增函數(shù);
⑵ 若存在唯一實(shí)數(shù)使得成立,求正整數(shù)的值;
⑶ 若時(shí),恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減;
(1)求a的值;
(2)求證:x=1是該函數(shù)的一條對(duì)稱軸;
(3)是否存在實(shí)數(shù)b,使函數(shù)的圖象與函數(shù)f(x)的圖象恰好有兩個(gè)交點(diǎn)?若存在,求出b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足
(I)證明:函數(shù)是集合M中的元素;
(II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。 
(III)若集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n],都存在,使得等式成立。試用這一性質(zhì)證明:對(duì)集合M中的任一元素,方程只有一個(gè)實(shí)數(shù)根。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的圖象過(guò)點(diǎn),且它在處的切線方程為.
(1) 求函數(shù)的解析式;
(2) 若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求下列函數(shù)的導(dǎo)數(shù):
1.;                2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

y=esinxcos(sinx),則y′(0)等于(    )
A.0B.1C.-1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案