f(x)=2-x-ln(x3+1)實(shí)數(shù)a,b,c滿(mǎn)足f(a)f(b)f(c)<0,且0<a<b<c.若實(shí)數(shù)x0是f(x)的一個(gè)零點(diǎn),則下列不等式中不可能成立的是( 。
A.x0<aB.x0>bC.x0<cD.x0>c
∵f(x)=2-x-ln(x3+1)的零點(diǎn)即為函數(shù)y=2-x與函數(shù)y=ln(x3+1)交點(diǎn)的橫坐標(biāo)
又∵函數(shù)y=2-x在R上為減函數(shù),y=ln(x3+1)在(-1,+∞)上為增函數(shù),
∴函數(shù)y=2-x與函數(shù)y=ln(x3+1)有且只有一個(gè)交點(diǎn)x0,
即f(x)=2-x-ln(x3+1)有且只有一個(gè)零點(diǎn)
當(dāng)x<x0時(shí),f(x)>0,當(dāng)x>x0時(shí),f(x)<0,
∵0<a<b<c.
當(dāng)0<x0<a<b<c,f(a)f(b)f(c)<0成立,即A,C可能成立
當(dāng)0<a<x0<b<c,f(a)f(b)f(c)>0,
當(dāng)0<a<b<x0<c,f(a)f(b)f(c)<0成立,即B可能成立
當(dāng)0<a<b<c<x0,f(a)f(b)f(c)>0,
綜上只有D不可能成立
故選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3+bx2-3x+
1
3
,f(2)=-7,f′(2)=-3,g(2)=1,g′(2)=-
1
2

(1)求函數(shù)f(x)在[-4,4]的最大值和最小值;
(2)設(shè)h(x)=
f(x)+5
g(x)
,求曲線y=h(x)在點(diǎn)(2,h(2))處的切線l的方程,并判斷l(xiāng)是否與曲線y=f(x)相切,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當(dāng)a=1時(shí),求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個(gè)不等的實(shí)根,求實(shí)數(shù)m的范圍;
(3)當(dāng)2≤a<9時(shí),設(shè)f(x)=f2(x)所對(duì)應(yīng)的自變量取值區(qū)間的長(zhǎng)度為l(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問(wèn),是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫(xiě)出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都二模)對(duì)于定義在區(qū)間D上的函數(shù)f(x),若滿(mǎn)足對(duì)?x1,x2∈D,且x1<x2時(shí)都有 f(x1)≥f(x2),則稱(chēng)函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時(shí),f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時(shí),f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時(shí),f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:成都二模 題型:填空題

對(duì)于定義在區(qū)間D上的函數(shù)f(x),若滿(mǎn)足對(duì)?x1,x2∈D,且x1<x2時(shí)都有 f(x1)≥f(x2),則稱(chēng)函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時(shí),f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時(shí),f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時(shí),f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號(hào)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案