已知一非零向量列{an}滿足:a1=(1,2),
(1)證明:{|an|}是等比數(shù)列;
(2)求向量an-1與an的夾角θ(n≥2);
(3)把向量a1,a2,…,an…中所有與a1共線的向量按原來的前后順序排成一列,記為b1,b2,…,bn,…,其中b1=a1,若(O是坐標(biāo)原點(diǎn)),求Sn
【答案】分析:(1)用等比數(shù)列的定義證明:先求,通過符合等比數(shù)列的定義可證,但要注意明確首項(xiàng)和公比.
(2)根據(jù)向量的夾角公式來求,先求數(shù)量積,再分別求模,代入公式求解.
(3)由(2)知,a1∥a3∥a5∥奇數(shù)項(xiàng)共線,則bn=a2n-1.由,得,從而有再由等比數(shù)列前n項(xiàng)和公式求解.
解答:解:(1)證明:,

,∴{|an|}是首項(xiàng)為.公比為的等比數(shù)列.(4分)
(2)∵,∴an-1與an的夾角θ=90°(6分)
(3)∴由(2)知,a1∥a3∥a5∥.即bn=a2n-1
,得

,∴,
(12分)
點(diǎn)評(píng):本題主要考查知識(shí)間的轉(zhuǎn)化與應(yīng)用,涉及到數(shù)列的判斷與證明,通項(xiàng)公式及前n項(xiàng)和公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
12
(xn-1-yn-1xn-1+yn-1)(n≥2)

(1)證明:{|an|}是等比數(shù)列;
(2)設(shè)θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;
(3)設(shè)cn=|an|log2|an|,問數(shù)列{cn}中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成都一模 題型:解答題

已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)(n≥2)

(1)證明:{|an|}是等比數(shù)列;
(2)設(shè)θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;
(3)設(shè)cn=|an|log2|an|,問數(shù)列{cn}中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省汕頭市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
(1)證明:{|an|}是等比數(shù)列;
(2)設(shè)θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;
(3)設(shè)cn=|an|log2|an|,問數(shù)列{cn}中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省成都市高三12月一診試卷(理科)(解析版) 題型:解答題

已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
(1)證明:{|an|}是等比數(shù)列;
(2)設(shè)θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn;
(3)設(shè)cn=|an|log2|an|,問數(shù)列{cn}中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省汕頭市高三畢業(yè)班教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知一非零向量列{an}滿足:a1=(1,1),an=(xn,yn)=
(1)證明:{|an|}是等比數(shù)列;
(2)設(shè)θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)設(shè)cn=|an|log2|an|,問數(shù)列{cn}中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案