已知α是第二象限的角,且sinα=
1
5
,求
sin(α+π)•cos(π-α)•tan(π-α)
tan(π+α)•cos(
2
+α)
的值.
考點:同角三角函數(shù)基本關(guān)系的運用,運用誘導(dǎo)公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:利用同角三角函數(shù)基本關(guān)系,求出cosα=-
2
6
5
,利用誘導(dǎo)公式化簡,代入可得結(jié)論.
解答: 解:∵α是第二象限的角,且sinα=
1
5
,
∴cosα=-
2
6
5
,
sin(α+π)•cos(π-α)•tan(π-α)
tan(π+α)•cos(
2
+α)
=
-sinα(-cosα)(-tanα)
tanαsinα
=-cosα=
2
6
5
點評:本題考查同角三角函數(shù)基本關(guān)系的運用,考查運用誘導(dǎo)公式化簡求值,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.84.6,b=70.8,c=log0.87,則a,b,c的大小關(guān)系是( 。
A、c<b<a
B、c<a<b
C、a<c<b
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2
|x|-1
,則其定義域為( 。
A、[-2,2]
B、[-2,1)∪(1,2]
C、[-2,-1)∪(-1,1)∪(1,2]
D、(-2,-1)∪(-1,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二圓C1:x2+y2=1和C2:x2+y2-4x-5=0的位置關(guān)系是( 。
A、相交B、外切C、內(nèi)切D、外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1,x≤0
-2x,x>0
,則f(f(-2))=
 
,若f(x)=10,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,ab≠0則以
|a|
a
+
|b|
b
可能的取值為元素組成的集合用列舉法可表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為24cm,弧長為16πcm的弧,其所對的圓心角為α,則與α終邊相同的角的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
loga(2x-1)
(0<a<1)的定義域為( 。
A、[1,+∞)
B、(-∞,
1
2
C、(
1
2
,1]
D、(
1
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax3+bx(a,b為常數(shù),且a≠0)滿足條件:f(-x+5)=f(x-3)且方程f(x)=x有兩個相等實根.
(1)求f(x)的表達式;
(2)當(dāng)x∈[0,3)時,求函數(shù)f(x)的取值范圍;
(3)是否存在實數(shù)m,n(m<n)使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案