己知α∈R,sinα+2cosα=
5
,則tan2α=
 
考點:二倍角的正切,同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:依題意可求得cosα=
2
5
5
,于是sinα=
5
5
,于是有tanα=
1
2
,利用二倍角的正切即可求得tan2α.
解答: 解:∵sinα+2cosα=
5
,sin2α+cos2α=1,
(
5
-2cosα)
2
+cos2α=1,
整理得:(
5
cosα-2)
2
=0,
解得:cosα=
2
5
=
2
5
5
,于是sinα=
1
5
=
5
5
;
∴tanα=
1
2

∴tan2α=
2tanα
1-tan2α
=
1
2
1-(
1
2
)
2
=
4
3

故答案為:
4
3
點評:本題考查二倍角的正切,考查同角三角函數(shù)基本關(guān)系的運用,求得tanα=
1
2
是關(guān)鍵,考查運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出如圖算法:(1)指出其功能(用算式表示),(2)將該算法用流程圖描述之.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>1,0<b<1,則logab+logba的取值范圍是(用區(qū)間表示)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣的方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若將函數(shù)f(x)=x5表示為f(x)=a0+a1(1+x)+a2(1+x)2+…a5(1+x)5,其中a0,a1,a2,…,a5為實數(shù),則a0+a3=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足不等式組
2x-y≤0
x+y-3≥0
x+2y≤6
,則z=x-y的最小值為( 。
A、-1
B、-
6
5
C、-3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x||x+1|<1},B{x|y=
1
x+1
},則A∩B=( 。
A、(-2,-1)
B、(-2,-1]
C、(-1,0)
D、[-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-y+5≥0
x+y≥0
x≤3
,若y≥kx-3恒成立,則實數(shù)k的數(shù)值范圍是( 。
A、[-
11
5
,0]
B、[0,
11
3
]
C、(-∞,0]∪[
11
5
,+∞)
D、(-∞,-
11
5
]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)奇函數(shù)f(x)=cos(ωx+φ)-
3
sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,則ω,φ分別是( 。
A、2,
π
3
B、
1
2
,
π
6
C、
1
2
,
π
3
D、2,
π
6

查看答案和解析>>

同步練習冊答案