精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC中,a,b,c為角A,B,C所對的邊,且

(1)求cosA的值;

(2)若△ABC的面積為,并且邊AB上的中線CM的長為,求b,c的長.

【答案】(1);(2),,

【解析】

(1)運用向量的數量積的定義,以及正弦定理和誘導公式,化簡即可得到
(2)由三角形的面積公式,以及余弦定理,解關于 的方程,即可得到.

(1)b(3b-c)cosA=即為

b(3b-c)cosA=bacosC,

即有3bcosA=ccosA+acosC,

由正弦定理可得,

3sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,

即有cosA=;

(2)由cosA=,可得sinA==

則三角形的面積S=bcsinA=2, 即bc=6,

在△ACM中,CM2=b2+-2bcosA,

即為=b2+-2,即b2+=,

解得b=2,c=3.或b=,c=4.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)在R上存在導數f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實數a的取值范圍為(
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,曲線在點處的切線方程為

(1)求,的值;

(2)若,求函數的單調區(qū)間;

(3)設函數,且在區(qū)間內為減函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,函數f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=ln(x2﹣4x+3)的單調減區(qū)間為( 。

A. (2,+∞) B. (3,+∞) C. (﹣∞,2) D. (﹣∞,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n都有an是n與Sn的等差中項,bn=an+1.
(1)求證:數列{bn}是等比數列,并求出其通項bn;
(2)若數列{Cn}滿足Cn= 且數列{C }的前n項和為Tn , 證明Tn<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的長軸與短軸之和為6,橢圓上任一點到兩焦點 的距離之和為4.

(1)求橢圓的標準方程;

(2)若直線 與橢圓交于, 兩點, 在橢圓上,且, 兩點關于直線對稱,問:是否存在實數,使,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,2AE=BD=2.
(Ⅰ)若F是線段CD的中點,證明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

同步練習冊答案