設(shè)函數(shù)f(x)=ex(ax2-x-1)(a∈R).
(Ⅰ)若函數(shù)f(x)在R上單調(diào)遞減,求a的取值范圍
(Ⅱ)當(dāng)a>0時,求f(|sinx|)的最小值.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)先求導(dǎo),再根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系,即可求出a的范圍.
(Ⅱ)討論a的取值范圍,再根據(jù)導(dǎo)數(shù)求函數(shù)的單調(diào)性,從而可求出函數(shù)的最小值.
解答: 解:(Ⅰ)∵f(x)=ex(ax2-x-1),
∴f'(x)=ex(ax2-x-1)+ex(2ax-1)=ex[ax2+(2a-1)x-2],
①a=0時,顯然不滿足,
②當(dāng)a≠0時,f'(x)≤0恒成立,
即a<0且(2a-1)2+4×2×a≤0,所以a=-
1
2

(Ⅱ)①當(dāng)
1
a
≥1時,即0<a≤1,f(|sinx|)min=f(1)=e(a-2)
,
②當(dāng)0<
1
a
<1時,即a>1,f(|sinx|)min=f(
1
a
)=e
1
a
(
1
a
-
1
a
-1)=-e
1
a
點評:該題考查函數(shù)的求導(dǎo),是否為二次函數(shù)的判斷,在解答過程中容易忽略判斷二次項的系數(shù),該地方是易錯點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若3x2-xy+3y2=20,則8x2+23y2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AB=2AD=1,AC=
3
且∠CAB=
π
6
,∠BAD=
3
,設(shè)
AC
AB
AD
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式|x-l+log2(x-1)|<x-1+|1og2(x-1)|的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
a(x+2)
,方程x=f(x)有唯一解,其中實數(shù)a為常數(shù),f(x1)=
2
2013
,f(xn)=xn+1(n∈N*).
(1)求f(x)的表達(dá)式;
(2)求x2015的值;
(3)若an=
4
xn
-4023且bn=
a
2
n+1
+
a
2
n
2an+1an
(n∈N*),求證:b1+b2+…+bn<n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
, 
b
,
c
滿足|
a
-
b
|=1
,(
a
-
c
)•(
b
-
c
)=0
a
b
≥0
”,設(shè)|
c
|
的最大值與最小值分別為m,n,則m-n值為( 。
A、1
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c.設(shè)函數(shù)f(x)=2sin(
x
2
+
π
6
)cos
x
2
+
1
2
,x∈R,若f(A)=
3
2

(Ⅰ)求角A的大。
(Ⅱ)當(dāng)a=14,b=10時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+sinx(x∈R)(  )
A、是奇函數(shù),且在(-
π
2
,
π
2
)上是減函數(shù)
B、是奇函數(shù),且在(-
π
2
,
π
2
)上是增函數(shù)
C、是偶函數(shù),且在(-
π
2
π
2
)上是減函數(shù)
D、是偶函數(shù),且在(-
π
2
,
π
2
)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是實數(shù),則下列命題為真命題的是(  )
A、“a>b”是“a2>b2”的充分條件
B、“a>b”是“a2>b2”的必要條件
C、“a>b”是“ac2>bc2”的必要條件
D、“a>b”是“|a|>|b|”的充要條件

查看答案和解析>>

同步練習(xí)冊答案