【題目】已知函數(shù),記的解集為.
(1)求集合(用區(qū)間表示);
(2)當(dāng)時(shí),求函數(shù)的最小值;
(3)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍.
【答案】(1);(2)2;(3).
【解析】
(1)利用分段函數(shù)解析式,求得不等式的解集.
(2)利用對(duì)數(shù)運(yùn)算化簡(jiǎn)函數(shù),結(jié)合二次函數(shù)的性質(zhì)求得函數(shù)的最小值.
(3)根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.
(1)當(dāng)時(shí),由得,即,故.當(dāng)時(shí),由得,即,故.綜上所述,集合.
(2)由(1)得,即函數(shù)的定義域?yàn)?/span>.,由于,所以,結(jié)合二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),取得最小值為.
(3)依題意函數(shù)在區(qū)間上為增函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,以及二次函數(shù)的開口向上,對(duì)稱軸可知,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, , , , 是中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若,過的平面交于點(diǎn),且為的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)討論函數(shù)的單調(diào)性;
(2)證明:當(dāng)時(shí),函數(shù)有最小值.設(shè)的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=,|AF2|=.
(1)求曲線C1和C2的方程;
(2)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求△CF1F2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì):對(duì)任意的、,與兩數(shù)中至少有一個(gè)屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)證明:且;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市有戶籍的人口共萬,其中老人(年齡歲及以上)人數(shù)約有萬,為了了解老人們的健康狀況,政府從老人中隨機(jī)抽取人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:
(1)若從樣本中的不能自理的老人中采取分層抽樣的方法再抽取人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(2)估算該市歲以上長(zhǎng)者占全市戶籍人口的百分比;
(3)政府計(jì)劃為歲及以上長(zhǎng)者或生活不能自理的老人每人購(gòu)買元/年的醫(yī)療保險(xiǎn),為其余老人每人購(gòu)買元/年的醫(yī)療保險(xiǎn),不可重復(fù)享受,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2bcosC=acosC+ccosA.
(1)求角C的大小;
(2)若b=2,c=,求a及△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的方程為(),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn), 的坐標(biāo)分別為, ,點(diǎn)在線段上,滿足,直線的斜率為.
(1)求橢圓的方程;
(2)若斜率為的直線交橢圓于, 兩點(diǎn),交軸于點(diǎn)(),問是否存在實(shí)數(shù)使得以為直徑的圓恒過點(diǎn)?若存在,求的值,若不存在,說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點(diǎn)M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com