【題目】如果f(x)是定義在R上的奇函數(shù),那么下列函數(shù)中,一定為偶函數(shù)的是( )
A.y=x+f(x)
B.y=xf(x)
C.y=x2+f(x)
D.y=x2f(x)
【答案】B
【解析】解:∵f(x)是奇函數(shù),∴f(﹣x)=﹣f(x).
對(duì)于A,g(﹣x)=﹣x+f(﹣x)=﹣x﹣f(x)=﹣g(x),
∴y=x+f(x)是奇函數(shù).
對(duì)于B,g(﹣x)=﹣xf(﹣x)=xf(x)=g(x),
∴y=xf(x)是偶函數(shù).
對(duì)于C,g(﹣x)=(﹣x)2+f(﹣x)=x2﹣f(x),
∴y=x2+f(x)為非奇非偶函數(shù),
對(duì)于D,g(﹣x)=(﹣x)2f(﹣x)=﹣x2f(x)=﹣g(x),
∴y=x2f(x)是奇函數(shù).
故選B.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的奇偶性,需要了解偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z1=1+3i,z2=3+i(i為虛數(shù)單位).在復(fù)平面內(nèi),z1﹣z2對(duì)應(yīng)的點(diǎn)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國際學(xué)術(shù)會(huì)議上,來自四個(gè)國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會(huì)說英語;
乙是法國人,還會(huì)說日語;
丙是英國人,還會(huì)說法語;
丁是日本人,還會(huì)說漢語;
戊是法國人,還會(huì)說德語;
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊 C. 甲丙戊乙丁 D. 甲乙丙丁戊
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的方程是x2+y2+2ax+2y+(a﹣1)2=0,0<a<1時(shí)原點(diǎn)與圓的位置關(guān)系是( )
A.原點(diǎn)在圓上
B.原點(diǎn)在圓外
C.原點(diǎn)在圓內(nèi)
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)空間四條直線a,b,c,d,滿足a⊥b,b⊥c,c⊥d,d⊥a,下列命題中真命題是( )
A.a⊥c
B.b⊥d
C.b∥d或a∥c
D.b∥d且a∥c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種種子每粒發(fā)芽的概率都為0.9,現(xiàn)播種了1000粒,對(duì)于沒有發(fā)芽的種子,每粒需再補(bǔ)種2粒,補(bǔ)種的種子數(shù)記為X,則X的數(shù)學(xué)期望為( )
A.100
B.200
C.300
D.400
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>1,函數(shù)f(x)=(1+x2)ex-a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:f(x)在(-∞,+∞)上僅有一個(gè)零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com