【題目】已知函數(shù)

1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;

2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.

【答案】(1)答案見解析(2)

【解析】

1)先對函數(shù)進(jìn)行求導(dǎo)得,對分成兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;

2)對函數(shù)求導(dǎo)得,從而有,,,三個方程中利用得到.將不等式的左邊轉(zhuǎn)化成關(guān)于的函數(shù),再構(gòu)造新函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最小值,從而得到的取值范圍.

解:(1)由,

,

當(dāng)時,則,故上單調(diào)遞減;

當(dāng)時,令

所以上單調(diào)遞減,在上單調(diào)遞增.

綜上所述:當(dāng)時,上單調(diào)遞減;

當(dāng)時,上單調(diào)遞減,在上單調(diào)遞增.

2)∵,

,

,

,,∴

解得.

.

設(shè),

,

上單調(diào)遞減;

當(dāng)時,.

,即所求的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,ADBCABBC,BDDC,點EBC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AEAC,DE,得到如圖2所示的幾何體.

(Ⅰ)求證:AB⊥平面ADC;

(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為,求二面角EADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù)的導(dǎo)函數(shù).

1)若,都有成立(其中),求的值;

2)證明:當(dāng)時,

3)設(shè)當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右焦點為為它的中心,為雙曲線右支上的一點,的內(nèi)切圓圓心為,且圓軸相切于點,過作直線的垂線,垂足為,若雙曲線的離心率為,則( )

A.B.C.D.關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求時的最值;

2)若時,都有,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在所有棱長都相等的三棱錐中,DE,F分別是AB,BC,CA的中點,下列四個命題:

1平面PDF;(2平面;

3)平面平面;(4)平面平面

其中正確命題的序號為________

A.2)(3B.1)(3C.2)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點.

(1)若點的極坐標(biāo)為,求的值;

(2)求曲線的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,說法正確的個數(shù)是(

1)若pq為真命題,則pq均為真命題

2)命題x0R,0”的否定是xR2x0”

3x[1,2]x2恒成立的充分條件

4)在ABC中,“sinAsinB的必要不充分條件

5)命題x21,則x1”的否命題為:x21,則x≠1”

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為,過的直線交于,兩點,點的坐標(biāo)為.

1)若點也是頂點為原點的拋物線的焦點,求拋物線的方程;

2)當(dāng)軸垂直時,求直線的方程;

3)設(shè)為坐標(biāo)原點,證明:.

查看答案和解析>>

同步練習(xí)冊答案