函數(shù)y=2tan(3x-
π
6
)的一個對稱中心是(  )
A、(-
π
9
,0)
B、(-
π
4
,0)
C、(
π
6
,0)
D、(
2
3
π,0)
考點:正切函數(shù)的奇偶性與對稱性
專題:三角函數(shù)的圖像與性質
分析:對稱中心就是圖象與x軸的交點,令3x-
π
6
=
2
,k∈z,解得x,即可得到函數(shù)的對稱中心,從而得到答案.
解答: 解:∵函數(shù)y=2tan(3x-
π
6
),令3x-
π
6
=
2
,k∈z,
可得 x=
6
+
π
18
,k∈z,故對稱中心為 (
6
+
π
18
,0 ),令 k=-1,
可得一個對稱中心是 (-
π
9
,0),
故選:A.
點評:本題考查正切函數(shù)的對稱中心的求法,得到3x-
π
6
=
2
,k∈z是解題的關鍵,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,2x>0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=2017x+log2017x,則在R上f(x)零點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,直線 A1C與平面ABCD所成角的正弦值等于(  )
A、
2
3
B、
5
3
C、
2
5
5
D、
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是拋物線y2=x上的動點,點A(2,0),求|PA|的最小值時點P坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求使下列函數(shù)取得最大值,最小值的自變量的集合,并寫出最大值,最小值各是多少.
(1)y=2sinx,x∈(-
3
2
π,2π)
(2)y=2-cos
x
3
,x∈(-
π
4
,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
2
),g(x)=cos2x,直線x=t(t∈R)與函數(shù)f(x),g(x)的圖象分別交于點M,N,記|MN|=h(t)則函數(shù)h(t)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下五個命題:
(1)設數(shù)列{an}滿足a1=1,an+1=2an+1,則數(shù)列{an}的通項公式為an=2n-1;
(2)若a,b,c分別是△ABC的三個內角A,B,C所對的邊長,a2+b2-c2>0,則△ABC一定是銳角三角形;
(3)若A,B是三角形△ABC的兩個內角,且sinA<sinB,則BC<AC;
(4)若關于x的不等式ax-b<0的解集為(1,+∞),則關于x的不等式
bx+a
x+2
<0的解集為(-2,-1);
(5)函數(shù)y=sinx+
4
sinx
(0<x<π)的最小值為4;
其中真命題為
 
(所有正確的都選上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2,對任意實數(shù)t,gt(x)=-tx+1.
(1)h(x)=gt(x)-
x
f(x)
在(0,3]上是單調遞增的,求實數(shù)t的取值范圍;
(2)若mf(x)<g2(x)對任意x∈(0,
1
3
]
恒成立,求正數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案