A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 先求出函數(shù)f(x)在R上的單調(diào)性,再結(jié)合對數(shù)函數(shù)的性質(zhì),從而判斷出$f(\frac{1}{{{{log}_a}2}})+f({log_{\frac{1}{2}}}b)>0$成立的充要條件,進(jìn)而得到答案.
解答 解:由函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,
∴函數(shù)f(x)在R上單調(diào)遞增,
若$f(\frac{1}{{{{log}_a}2}})+f({log_{\frac{1}{2}}}b)>0$,
則f(${log}_{2}^{a}$)>-f(-${log}_{2}^$)=f(${log}_{2}^$),
則${log}_{2}^{a}$>${log}_{2}^$,
則a>b,
故選:C.
點(diǎn)評 本題考查了充分必要條件,考查了對數(shù)函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性,本題是一道基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -x2+ln(x+$\sqrt{1+{x}^{2}}$) | B. | x2-ln(x+$\sqrt{1+{x}^{2}}$) | C. | -x2+ln(-x+$\sqrt{1+{x}^{2}}$) | D. | x2+ln(x+$\sqrt{1+{x}^{2}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | l | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0≤b≤4 | B. | b≤0或 b≥4 | C. | 0≤b<4 | D. | b<0或b≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 16 | C. | 21 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com