【題目】已知梯形ABCD中,,如圖(1)所示.現(xiàn)將△ABC沿邊BC翻折至A'BC,記二面角A'—BCD的大小為θ.

1)當(dāng)θ90°時,如圖(2)所示,過點(diǎn)B作平面與AD垂直,分別交于點(diǎn)E,F,求點(diǎn)E到平面的距離;

2)當(dāng)時,如圖(3)所示,求二面角的正切值

【答案】1;(2.

【解析】

1)求得的長,利用等體積法計算出點(diǎn)E到平面的距離.

2)作出二面角的平面角,由此求得其正切值.

1)因?yàn)槠矫?/span>平面,平面平面,

,平面,

所以平面,又平面,所以,

因?yàn)?/span>平面,平面,所以

,平面,

所以平面,又平面,所以

中,,

又平面平面,平面平面,

,平面,

所以平面,又平面,所以

中,,

所以

中,,

設(shè)點(diǎn)到平面的距離為,

因?yàn)?/span>,所以,

,所以;

2)過點(diǎn)作直線//,過于點(diǎn).

因?yàn)?/span>,所以,又因?yàn)?/span>,

所以就是二面角的平面角,

所以,因?yàn)?/span>,所以

過點(diǎn)于點(diǎn),連接,

因?yàn)?/span>,,所以平面,

平面,所以平面平面.

又因?yàn)槠矫?/span>平面,平面

所以平面

因?yàn)?/span>,,所以平面,

因?yàn)?/span>平面,所以

所以是二面角的平面角,

中,

所以二面角的正切值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】疫情期間,有一批貨物需要用汽車從城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.據(jù)調(diào)查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:

所用時間

10

11

12

13

通過公路1的頻數(shù)

20

40

20

20

通過公路2的頻數(shù)

10

40

40

10

1)為進(jìn)行某項(xiàng)研究,從所用時間為1260輛汽車中隨機(jī)抽取6輛,若用分層隨機(jī)抽樣的方法抽取,求從通過公路1和公路2的汽車中各抽取幾輛:

2)若從(1)的條件下抽取的6輛汽車中,再任意抽取2輛汽車,求這2輛汽車至少有1輛通過公路1的概率;

3)假設(shè)汽車A只能在約定時間的前11h出發(fā),汽車B只能在約定時間的前12h出發(fā).為了盡最大可能在各自允許的時間內(nèi)將貨物從城市甲運(yùn)到城市乙,汽車A和汽車B應(yīng)如何選擇各自的道路?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)ae2x+(a﹣2) exx.

(1)討論的單調(diào)性;

(2)若有兩個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若處有極值,問是否存在實(shí)數(shù)m,使得不等式對任意恒成立?若存在,求出m的取值范圍;若不存在,請說明理由.

2)若,設(shè).

①求證:當(dāng)時,;

②設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,斜邊為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)上是單調(diào)函數(shù),則a的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和點(diǎn).

1)過點(diǎn)向圓引切線,求切線的方程;

2)求以點(diǎn)為圓心,且被直線截得的弦長為8的圓的方程;

3)設(shè)為(2)中圓上任意一點(diǎn),過點(diǎn)向圓引切線,切點(diǎn)為,試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請求出定點(diǎn)的坐標(biāo),并指出相應(yīng)的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點(diǎn).

1)求異面直線DC1,B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是菱形,且,,,.

(1)證明:平面.

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案