(本小題共14分)

       如圖,在四面體PABC中,PC⊥AB,PA⊥BC,點(diǎn)D,E,F,G分別是棱AP,AC,BC,PB的中點(diǎn).

       (Ⅰ)求證:DE∥平面BCP;             

       (Ⅱ)求證:四邊形DEFG為矩形;

       (Ⅲ)是否存在點(diǎn)Q,到四面體PABC六條棱的中點(diǎn)的距離相等?說明理由.

(共14分)

       證明:(Ⅰ)因?yàn)镈,E分別為AP,AC的中點(diǎn),

所以DE//PC。

又因?yàn)镈E平面BCP,

所以DE//平面BCP。

(Ⅱ)因?yàn)镈,E,F(xiàn),G分別為

AP,AC,BC,PB的中點(diǎn),

所以DE//PC//FG,DG//AB//EF。

所以四邊形DEFG為平行四邊形,

又因?yàn)镻C⊥AB,

所以DE⊥DG,

所以四邊形DEFG為矩形。

(Ⅲ)存在點(diǎn)Q滿足條件,理由如下:

連接DF,EG,設(shè)Q為EG的中點(diǎn)

由(Ⅱ)知,DF∩EG=Q,且QD=QE=QF=QG=EG.

分別取PC,AB的中點(diǎn)M,N,連接ME,EN,NG,MG,MN。

與(Ⅱ)同理,可證四邊形MENG為矩形,其對角線點(diǎn)為EG的中點(diǎn)Q,

且QM=QN=EG,

所以Q為滿足條件的點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共14分)

      數(shù)列的前n項(xiàng)和為,點(diǎn)在直線

上.

   (I)求證:數(shù)列是等差數(shù)列;

   (II)若數(shù)列滿足,求數(shù)列的前n項(xiàng)和

   (III)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共14分)

如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。

(Ⅰ)求證:平面

(Ⅱ)當(dāng)EPB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2009北京理)(本小題共14分)

已知雙曲線的離心率為,右準(zhǔn)線方程為

(Ⅰ)求雙曲線的方程;

(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線

于不同的兩點(diǎn),證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題

(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F

⑴求證:PA//平面EDB

⑵求證:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題

(本小題共14分)

正方體的棱長為的交點(diǎn),的中點(diǎn).

(Ⅰ)求證:直線∥平面;

(Ⅱ)求證:平面;

(Ⅲ)求三棱錐的體積.

 

查看答案和解析>>

同步練習(xí)冊答案