已知男人中有5%患色盲,女人中有0.25%患色盲,從100個男人和100個女人中任選一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.

(1)(2)

解析試題分析:(1)設(shè)“任選一人是男人”為事件A,“任選一人是女人”為事件B,“任選一人是色盲”為事件C. 此人患色盲的概率
P=P(AC)+P(BC)=P(A)P(C|A)+P(B)P(C|B)=         6分
(2) P(A|C)= 注意:“女人中有0.25%患色盲” 表達(dá)的是條件概率.  12分
考點:條件概率
點評:在事件A發(fā)生的條件下事件B發(fā)生的概率為,在求解概率題目時先要由已知條件分析清楚是否為條件概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位為了參加上級組織的普及消防知識競賽,需要從兩名選手中選出一人參加.為此,設(shè)計了一個挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯;選手乙答對每題的概率都是,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列,并求出E(ξ),E(η);
(2)求D(ξ),D(η).請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個選手參加競賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機(jī)取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為Y
(1)列出所有可能結(jié)果。 
(2)求事件A=“取出球的號碼之和小于4”的概率。
(3)求事件B=“編號X<Y”的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某項競賽分別為初賽、復(fù)賽、決賽三個階段進(jìn)行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進(jìn)入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是,且各階段通過與否相互獨(dú)立.
(I)求該選手在復(fù)賽階段被淘汰的概率;
(II)設(shè)該選手在競賽中回答問題的個數(shù)為,求的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某射手擊中目標(biāo)的概率為0.8,每次射擊的結(jié)果相互獨(dú)立,現(xiàn)射擊10次,問他最有可能射中幾次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號的和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試用概率說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中央電視臺星光大道某期節(jié)目中,有5位實力均等的選手參加比賽,經(jīng)過四輪比賽決出周冠軍(每一輪比賽淘汰l位選手).
(1)求甲、乙兩位選手都進(jìn)入第三輪比賽的概率;
(2)求甲選手在第三輪被淘汰的的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

不透明的袋中有8張大小和形狀完全相同的卡片,卡片上分別寫有1,1,2,2,3,3,,.現(xiàn) 從中任取3張卡片,假設(shè)每張卡片被取出的可能性相同.
(I)求取出的三張卡片中至少有一張字母卡片的概率;
(Ⅱ)設(shè)表示三張卡片上的數(shù)字之和.當(dāng)三張卡片中含有字母時,則約定:有一個字母和二個相同數(shù)字時為這二個數(shù)字之和,否則,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲有一個箱子,里面放有x個紅球,y個白球(x,y≥0,且x+y=4);乙有一個箱子,里面放有2個紅球,1個白球,1個黃球.現(xiàn)在甲從箱子里任取2個球,乙從箱子里任取1個球.若取出的3個球顏色全不相同,則甲獲勝.
(1)試問甲如何安排箱子里兩種顏色球的個數(shù),才能使自己獲勝的概率最大?
(2)在(1)的條件下,求取出的3個球中紅球個數(shù)的期望.

查看答案和解析>>

同步練習(xí)冊答案