已知拋物線y2=2px(p>0),過點(diǎn)E(m,0)(m≠0)的直線交拋物線于點(diǎn)M、N,交y軸于點(diǎn)P,若
PM
ME
,
PN
NE
,則λ+μ=( 。
A、1
B、-
1
2
C、-1
D、-2
分析:分別設(shè)M,N,P的坐標(biāo)為(x1,y1),(x2,y2),(x0,y0),由
PM
ME
,
PN
NE
,可得到x1,x2,y1,y2,再由直線MN的表達(dá)式,可用y來表示x,然后帶到拋物線表達(dá)式中,根據(jù)韋達(dá)定理,求出y1,y2的積、和,分別等于之前算出的y1,y2的積、和.從而得出λ+μ=-1.
解答:解:分別設(shè)M,N,P的坐標(biāo)為(x1,y1),(x2,y2),(x0,y0),
PM
ME
,
PN
NE
,
(x1-x0y1-y0)  =λ(m-x1,-y1
(x2-x0,y2-y0)=μ(m-x2,-y2)   
,可得到x1,x2,y1,y2
直線MN的方程為:
y-y1
x-x1
=
y2-y1
x2-x1
,可用y來表示x,
然后帶到拋物線表達(dá)式中,
根據(jù)韋達(dá)定理,求出y1,y2的積、和,分別等于之前算出的y1,y2的積、和.從而得出λ+μ=-1.
故選C.
點(diǎn)評:本題考查拋物線的性質(zhì)和應(yīng)用,解題時要注意向量和直線方程和合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時,證明:
kMA+kMBkMF
是一個定值,并求出這個值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案