19.設函數(shù)f(x)=|2x-4|+1.
(1)畫出函數(shù)y=f(x)的圖象.
(2)若對任意x∈R,f(x)≥a2-3a恒成立,求實數(shù)a的取值范圍.

分析 (1)將函數(shù)表示為分段函數(shù)形式,然后進行作圖即可,
(2)利用不等式恒成立,轉化為最值恒成立即可.

解答 解:(1)y=f(x)=$\left\{\begin{array}{l}{2x-3,}&{x≥2}\\{5-2x,}&{x<2}\end{array}\right.$,則對應的函數(shù)圖象為:

(2)∵f(x)=|2x-4|+1≥1,
∴若對任意x∈R,f(x)≥a2-3a恒成立,
則等價為a2-3a≤1,即a2-3a-1≤0,
得$\frac{3-\sqrt{13}}{2}$<a<$\frac{3+\sqrt{13}}{2}$,
即實數(shù)a的取值范圍是$\frac{3-\sqrt{13}}{2}$<a<$\frac{3+\sqrt{13}}{2}$.

點評 本題主要考查函數(shù)圖象的應用,以及不等式恒成立問題,將函數(shù)表示為分段函數(shù)形式以及利用最值恒成立是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,在△ABC中,∠BAC=90°,AB=AC=2,AD⊥BC于D.將△ADC沿AD翻折至△ADC′,下列說法中正確的是①③④(寫出所有正確命題的序號)
①AD⊥BC′;    
②BC′可能與平面△ADC′垂直;
③D-ABC′可能是正三棱錐;
④三棱錐D-ABC′體積的最大值為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}中,${a_1}=1,{a_2}=\frac{1}{4}$,且$\frac{1}{{n{a_{n+1}}}}=\frac{1}{{(n-1){a_n}}}-\frac{1}{n(n-1)}(n≥2,n∈N)$.  
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:對一切n∈N*,有$a_1^2+a_2^2+…+a_n^2<\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,長寬高分別為a、b、c的長方體的六條面對角線組成等腰四面體ABCD.
(1)求證等腰四面體ABCD的每個面都是銳角三角形;
(2)求等腰四面體的體積及其外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=mx3-3(m+1)x2+nx+1在x=1處有極值m,n∈R
(Ⅰ)求m與n的關系式;
(Ⅱ)當m=-2時,求f(x)的單調區(qū)間及極小值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l1的參數(shù)方程$\left\{\begin{array}{l}{x=2+\sqrt{2}t}\\{y=1+\sqrt{2}t}\end{array}\right.$(t是參數(shù)),直線l2的極坐標方程為ρ(cosθ+sinθ)=2,則l1與l2的夾角是90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù),根據(jù)合情推理試猜測第七個三角形有( 。﹤石子
A.28B.21C.36D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知一家公司生產某種品牌服裝的年固定成本為10萬元,每生產1千件需另投入3萬元.設該公司一年內共生產該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$.
(1)寫出年利潤W(萬元)關于年產量x(千件)的函數(shù)解析式;
(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲得的年利潤最大?
(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.有甲、乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀非優(yōu)秀總計
甲班10
乙班30
合計105
已知在全部105人中隨機抽取一人為優(yōu)秀的概率為$\frac{2}{7}$.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按97.5%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到8或9號的概率.
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習冊答案