分析 (1)利用余弦定理,即可證明;
(2)利用割補(bǔ)法求體積,求出外接球半徑,即可求出外接球的表面積.
解答 (1)證明:易知四個(gè)面是全等的三角形.
三邊長(zhǎng)分別為$x=\sqrt{{b^2}+{c^2}}$,$y=\sqrt{{c^2}+{a^2}}$,$z=\sqrt{{a^2}+{b^2}}$,
不妨設(shè)a≤b≤c,則最大邊x所對(duì)角θ 的余弦值$cosθ=\frac{{{y^2}+{z^2}-{x^2}}}{2yz}=\frac{a^2}{{\sqrt{{a^2}+{b^2}}\sqrt{{c^2}+{a^2}}}}>0$
∴θ 為銳角,
∴三角形為銳角三角形.(4分)
(2)解:體積$V=abc-4×\frac{1}{3}×\frac{1}{2}abc=\frac{1}{3}abc$(7分)
外接球半徑$R=\frac{1}{2}BF=\frac{1}{2}\sqrt{{a^2}+{b^2}+{c^2}}$
外接球的表面積S=4πR2=π(a2+b2+c2).(10分)
點(diǎn)評(píng) 本題考查余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(1)<f(-1)<c | B. | f(-1)<c<f(1) | C. | f(1)<c<f(3) | D. | c<f(3)<f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 底面是矩形的平行六面體是長(zhǎng)方體 | |
B. | 底面是正方形的直平行六面體是正四棱柱 | |
C. | 底面是正方形的直四棱柱是正方體 | |
D. | 所有棱長(zhǎng)都相等的直平行六面體是正方體 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 是奇函數(shù)但不是偶函數(shù) | B. | 是偶函數(shù)但不是奇函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com