【題目】解答
(1)在公比為2的等比數(shù)列{an}中,a2與a5的等差中項是9 .求a1的值;
(2)若函數(shù)y=a1sin( φ),0<φ<π的一部分圖象如圖所示,M(﹣1,a1),N(3,﹣a1)為圖象上的兩點,設(shè)∠MON=θ,其中O為坐標(biāo)原點,0<θ<π,求cos(θ﹣φ)的值.
【答案】
(1)解:∵公比為2的等比數(shù)列{an}中,
a2與a5的等差中項是9 ,
= =9 ,
∴a2=2 =2a1,
∴a1= .
(2)解:若函數(shù)y=a1sin( φ)= sin( φ),0<φ<π的一部分圖象如圖所示,M(﹣1, ),N(3,﹣ )為圖象上的兩點,
結(jié)合五點法作圖可得 (﹣1)+φ= ,求得φ= ,故y= sin( ).
△MON中,由∠MON=θ,其中O為坐標(biāo)原點,利用余弦定理可得cosθ= = =﹣ ,
再結(jié)合0<θ<π,可得θ= ,
求cos(θ﹣φ)=cos( ﹣ )=cos =cos( ﹣ )=cos cos +sin sin =
【解析】(1)由條件利用等差中項、等比數(shù)列的定義,求得a1的值.(2)由五點法作圖求出φ的值,可得函數(shù)的解析式,△MON中,再利用余弦定理求得cosθ的值,再利用兩角差的余弦公公式,求得cos(θ﹣φ)的值.
【考點精析】本題主要考查了兩角和與差的余弦公式的相關(guān)知識點,需要掌握兩角和與差的余弦公式:才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且是定義域為R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的焦點在圓x2+y2=3上,且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點O的直線l與橢圓C交于A,B兩點,F為右焦點,若△FAB為直角三角形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.
(1)求二面角A﹣PB﹣C的余弦值.
(2)在線段CP上是否存在一點E,使得DE⊥PB,若存在,求線段CE的長度,不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓+=1的焦點分別是、, 是橢圓上一點,若連結(jié)、、三點恰好能構(gòu)成直角三角形,則點到軸的距離是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以雙曲線 (a>0,b>0)上一點M為圓心的圓與x軸恰相切于雙曲線的一個焦點F,且與y軸交于P、Q兩點.若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( )
A.
B.( , )
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com