對于函數(shù)y=f(x),如果存在區(qū)間[m,n],同時滿足下列條件:
①f(x)在[m,n]內是單調的;
②當定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.若函數(shù)f(x)=
a+1
a
-
1
x
(a>0)
存在“和諧區(qū)間”,則a的取值范圍是(  )
A.(0,1)B.(0,2)C.(
1
2
,
5
2
D.(1,3)
由題意可得函數(shù)f(x)=
a+1
a
-
1
x
(a>0)
在區(qū)間[m,n]是單調的,
所以[m,n]⊆(-∞,0)或[m,n]⊆(0,+∞),則f(m)=m,f(n)=n,
故m、n是方程
a+1
a
-
1
x
=x
的兩個同號的實數(shù)根,
即方程ax2-(a+1)x+a=0有兩個同號的實數(shù)根,注意到mn=
a
a
=1>0,
故只需△=(a+1)2-4a2>0,解得-
1
3
<a<1,
結合a>0,可得0<a<1
故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),且y=f(x+
π
2
)
為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù)②x=π是它的一條對稱軸;③(-π,0)是它圖象的一個對稱中心;
④當x=
π
2
時,它一定取最大值;其中描述正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①函數(shù)y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
②函數(shù)y=log2x2與函數(shù)y=2log2x是相等函數(shù);
③對于指數(shù)函數(shù)y=2x與冪函數(shù)y=x2,總存在x0,當x>x0 時,有2x>x2成立;
④對于函數(shù)y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內有零點.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
③⑤
③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•和平區(qū)一模)函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a,已知y=f(x)無零點,設F(x)=f2(x)+f2(-x),則對于函數(shù)y=F(x)有如下四種說法:①定義域是[-b,b];②最小值是0;③是偶函數(shù);④在定義域內單調遞增.其中正確的說法是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•上海模擬)對于函數(shù)y=f(x)的圖象上任意兩點A(a,f(a)),B(b,f(b)),設點C分
AB
的比為λ(λ>0).若函數(shù)為f(x)=x2(x>0),則直線AB必在曲線AB的上方,且由圖象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函數(shù)為f(x)=log2010x,請分析該函數(shù)的圖象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在區(qū)間[-3,3]上的函數(shù)y=f(x)滿足f(-x)+f(x)=0,對于函數(shù)y=f(x)的圖象上任意兩點(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若實數(shù)a,b滿足f(a2-2a)+f(2b-b2)≤0,則點(a,b)所在區(qū)域的面積為( 。
A、8B、4C、2D、1

查看答案和解析>>

同步練習冊答案