精英家教網 > 高中數學 > 題目詳情
函數f(x)的定義域為開區(qū)間(a,b),導函數f′(x)在(a,b)內的圖象如圖所示,則函數f(x)在開區(qū)間(a,b)內有極小值點的個數為( )
A.1
B.2
C.3
D.4
【答案】分析:根據當f'(x)>0時函數f(x)單調遞增,f'(x)<0時f(x)單調遞減,可從f′(x)的圖象可知f(x)在(a,b)內從左到右的單調性依次為增→減→增→減,然后得到答案.
解答:解:從f′(x)的圖象可知f(x)在(a,b)內從左到右的單調性依次為增→減→增→減,
根據極值點的定義可知在(a,b)內只有一個極小值點.
故選A.
點評:本題主要考查函數的極值點和導數正負的關系.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)的定義域為{x|x≠0},且滿足對于定義域內任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數,解關于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內僅有一解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域為(-1,1),它在定義域內既是奇函數又是增函數,且f(a-3)+f(4-2a)<0,則實數a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域為[-1,2],則函數
f(x+2)
x
的定義域為(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習冊答案