8.若x,y滿足條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{y≤a}\end{array}\right.$,且z=2x+3y的最大值是5,則實(shí)數(shù)a的值為1.

分析 先畫出可行域,結(jié)合圖形分析出目標(biāo)函數(shù)z=2x+3y取得最大值時(shí)對(duì)應(yīng)點(diǎn)的坐標(biāo),把其代入目標(biāo)函數(shù)再結(jié)合目標(biāo)函數(shù)z=2x+3y的最大值為5,即可求出實(shí)數(shù)a的值.

解答 解:實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤a\end{array}\right.$,如圖,
由圖可知,當(dāng)x=a,y=a時(shí),
目標(biāo)函數(shù)z=2x+3y的最大值是5.
5=2a+3a,解得:a=1
故答案為:1.

點(diǎn)評(píng) 本題主要考查簡(jiǎn)單線性規(guī)劃的應(yīng)用以及數(shù)形結(jié)合思想的應(yīng)用.在求目標(biāo)函數(shù)的最值時(shí),一般是在可行域的特殊點(diǎn)處,所以一般在解選擇和填空題時(shí),常用特殊點(diǎn)代入法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,E為PD中點(diǎn).
(1)求證:PB∥平面AEC;
(2)求證:平面PBC⊥平面PAB;
(3)設(shè)PA=1,AD=2,三棱錐P-ACD的體積V=$\frac{1}{3}$,求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x1是x+lgx=27的解,x2是x+10x=27的解,則x1+x2的值是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(1,2),若存在非零實(shí)數(shù)m,n使得$\overrightarrow{x}=\frac{1}{n}$$\overrightarrow{a}$+(n+1)$\overrightarrow$,$\overrightarrow{y}=m\overrightarrow{a}$+(n+4)$\overrightarrow$,且$\overrightarrow{x}⊥\overrightarrow{y}$,試求$\frac{m}{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知log89=a,log25=b,則lg3=( 。
A.$\frac{a}{b-1}$B.$\frac{3}{2(b-1)}$C.$\frac{3a}{2(b+1)}$D.$\frac{3(a-1)}{2b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則以下四個(gè)命題:
①$\left.\begin{array}{l}{α∥β}\\{α∥γ}\end{array}\right\}$⇒γ∥β②$\left.\begin{array}{l}{α⊥β}\\{m∥α}\end{array}\right\}$⇒m⊥β③$\left.\begin{array}{l}{m⊥α}\\{m∥β}\end{array}\right\}$⇒α⊥β④$\left.\begin{array}{l}{m∥n}\\{n⊆α}\end{array}\right\}$⇒m⊥α.
其中真命題為(  )
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若角α的終邊上有一點(diǎn)P(-1,m),且sinαcosα=$\frac{{\sqrt{3}}}{4}$,則m的值為( 。
A.$\sqrt{3}$B.$±\sqrt{3}$C.$-\sqrt{3}$或$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}中,a1=1,a2=3且an+2=3an+1-2an,n∈N,對(duì)數(shù)列{an}有下列命題:①數(shù)列{an}是等差數(shù)列;②數(shù)列{an+1-an}是等比數(shù)列;③當(dāng)n≥2時(shí),an都是質(zhì)數(shù);④$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<2,n∈N,則其中正確的命題有( 。
A.①②③④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線x2-$\frac{y^2}{3}$=1與拋物線y2=2px(p>0)有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為M,若|MF|=5,則點(diǎn)M的橫坐標(biāo)為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案