A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{2}$ |
分析 討論當f(x)≥g(x)時,當f(x)<g(x)時,求得min{f(x),g(x)},結(jié)合條件運用基本不等式,即可得到所求最大值.
解答 解:當f(x)≥g(x)時,min{f(x),g(x)}=g(x),
f(x)+g(x)=$\frac{2x}{{{x^2}+1}}$≥2g(x),
即g(x)≤$\frac{x}{1+{x}^{2}}$,
顯然x>0時,$\frac{x}{1+{x}^{2}}$有最大值,
由$\frac{x}{1+{x}^{2}}$=$\frac{1}{x+\frac{1}{x}}$≤$\frac{1}{2\sqrt{x•\frac{1}{x}}}$=$\frac{1}{2}$,
可得g(x)的最大值為$\frac{1}{2}$;
當f(x)<g(x)時,min{f(x),g(x)}=f(x),
f(x)+g(x)=$\frac{2x}{{{x^2}+1}}$>2f(x),
即f(x)<$\frac{x}{1+{x}^{2}}$,
顯然x>0時,$\frac{x}{1+{x}^{2}}$有最大值,
同上可得f(x)<$\frac{1}{2}$.
綜上可得,min{f(x),g(x)}的最大值為$\frac{1}{2}$.
故選:C.
點評 本題考查新定義的理解和運用,考查基本不等式的運用:求最值,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | -4 | C. | $\frac{2}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 對任意的點P,都有T(S6(P))=T(P) | |
B. | 至少存在4個單位圓上的P,使得T(S3(P))=T(P) | |
C. | 若點P的坐標為(1,0),則有T(S(P))=$\frac{\sqrt{3}}{2}$ | |
D. | 對任意的點P,都有T(P)+T(S2(P))+T(S4(P))=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 12π | C. | 4$\sqrt{3}$π | D. | 6π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com