依次將十個數(shù)輸入,要求將其中最大的數(shù)打印出來.怎樣用流程圖和偽代碼來表示問題的算法?

答案:
解析:

  分析:解決這個問題的思路很簡單,先選2個數(shù)進(jìn)行比較,去掉小的,留下大的;再取第3個數(shù)與留下的數(shù)進(jìn)行比較去掉小的留下大的;繼續(xù)進(jìn)行,直到每個數(shù)都被比較,最后留下的數(shù)就是最大數(shù).但用這種思想寫出的算法比較復(fù)雜.由于在本算法中某些步驟是重復(fù)進(jìn)行,則可用循環(huán)語句來描述此算法.用偽代碼設(shè)計算法如下:

  Read X

  max←X

  For I From 2 To 10

  Read X

  If X>max Then

  max←X

  End If

  End For

  Print max

  流程圖(如下圖所示):


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定有限個正數(shù)滿足條件T:每個數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;然后,在去掉已選入第一組的數(shù)后,對余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(Ⅰ)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個數(shù);
(Ⅱ)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個數(shù)與rn的大小關(guān)系,并證明rn-1
150n-Ln-1

(Ⅲ)對任何滿足條件T的有限個正數(shù),證明:N≤11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)N=2n(n∈N*,n≥2),將N個數(shù)x1,x2,…,xN依次放入編號為1,2,…,N的N個位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應(yīng)的前
N
2
個數(shù)和后
N
2
個位置,得到排列P1=x1x3…xN-1x2x4…xN,將此操作稱為C變換,將P1分成兩段,每段
N
2
個數(shù),并對每段作C變換,得到P2當(dāng)2≤i≤n-2時,將Pi分成2i段,每段
N
2i
個數(shù),并對每段C變換,得到Pi+1,例如,當(dāng)N=8時,P2=x1x5x3x7x2x6x4x8,此時x7位于P2中的第4個位置.當(dāng)N=16時,x7位于P2中的第
6
6
個位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)設(shè)N=2n(n∈N*,n≥2),將N個數(shù)x1,x2,…,xN依次放入編號為1,2,…,N的N個位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應(yīng)的前
N
2
和后
N
2
個位置,得到排列P1=x1x3…xN-1x2x4…xN,
將此操作稱為C變換,將P1分成兩段,每段
N
2
個數(shù),并對每段作C變換,得到P2,當(dāng)2≤i≤n-2時,將Pi分成2i段,每段
N
2i
個數(shù),并對每段作C變換,得到Pi+1,例如,當(dāng)N=8時,P2=x1x5x3x7x2x6x4x8,此時x7位于P2中的第4個位置.
(1)當(dāng)N=16時,x7位于P2中的第
6
6
個位置;
(2)當(dāng)N=2n(n≥8)時,x173位于P4中的第
3×2n-4+11
3×2n-4+11
個位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•奉賢區(qū)二模)現(xiàn)有31行67列表格一個,每個小格都只填1個數(shù),從左上角開始,第一行依次為1,2,…67;第二行依次為68,69…134;…依次把表格填滿.現(xiàn)將此表格的數(shù)按另一方式填寫,從左上角開始,第一列從上到下依次為1,2…,31;第二列從上到下依次為32,33,…,62;…依次把表格填滿.對于上述兩種填法,在同一小格里兩次填寫的數(shù)相同,這樣的小格在表格中共有
7
7
個.

查看答案和解析>>

同步練習(xí)冊答案