若點(diǎn)P在三個(gè)頂點(diǎn)坐標(biāo)分別為C(0,0)、A(0,2
3
)、B(2,0)的△ABC內(nèi)運(yùn)動(dòng),則動(dòng)點(diǎn)P到頂點(diǎn)A的距離|PA|<2
3
的概率為
 
考點(diǎn):幾何概型
專題:
分析:分別求出以A為圓心,AO為半徑的圓落在△ABC內(nèi)的面積、△ABC的面積,利用幾何概型的概率公式即可得到結(jié)論.
解答: 解:由題意,tanA=
2
2
3
=
3
3
,∴A=
π
6
,
以A為圓心,AO為半徑的圓落在△ABC內(nèi)的面積為
1
2
×2
3
×
π
6
×2
3
=π,
△ABC的面積為
1
2
×2×2
3
=2
3

∴動(dòng)點(diǎn)P到頂點(diǎn)A的距離|PA|<2
3
的概率為
π
2
3
=
3
6
π.
故答案為:
3
6
π.
點(diǎn)評(píng):本題主要考查幾何概型的概率計(jì)算,根據(jù)面積公式求出對(duì)應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平行四邊形兩條對(duì)角線的長(zhǎng)分別為a和b,兩對(duì)角線的一個(gè)交角為θ,(0°<θ<90°),求該平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2-x,對(duì)任意的x∈[-2,2],f(mx-2)+f(x)<0恒成立,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若60<x<84,28<y<33,則x-y的取值范圍是
 
x
y
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,an+1=an+2n(n∈N*),則a100的值是(  )
A、9900B、9902
C、9904D、11000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知b為如圖所示的程序框圖輸出的結(jié)果,則二項(xiàng)式(
bx
-
1
x
6的展開式中的常數(shù)項(xiàng)式( 。
A、-20B、-540
C、20D、540

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市環(huán)保所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,得出一天中環(huán)境綜合污染指數(shù)f(x)與時(shí)間(小時(shí))的關(guān)系為f(x)=|
1
2
sin(
π
32
x
)+
1
3
-a|+2a,x∈[0,24],其中a為氣象有關(guān)的參數(shù),且a∈[0,1],若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
(Ⅰ)令t=
1
2
sin(
π
32
x
),x∈[0,24],求t的取值范圍;并求函數(shù)M(a)關(guān)于a的解析式;
(Ⅱ)為加強(qiáng)對(duì)環(huán)境污染的整治,市政府規(guī)定每天的綜合污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)(a,25)在函數(shù)y=5x的圖象上,則tan
6
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
5-x+4x
2
-
|5-x-4x|
2
,則f(x)的遞增區(qū)間為
 
,函數(shù)g(x)=f(x)-
5
的零點(diǎn)個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案