如圖,矩形ABCD中,AB=4,AD=3,E,F(xiàn)分別是邊AB,BC上的點,且AE=BF=x,設(shè)五邊形AEFCD的面積為s,周長為c.
(1)分別寫出s,c關(guān)于x的函數(shù)解析式,并指出它們的定義域.
(2)分別求s,c的最小值及取最小值時x的值.
分析:(1)根據(jù)AE=BF=x,可得BE=4-x,CF=3-x,從而可得s,c關(guān)于x的函數(shù)解析式,即可寫出它們的定義域;
(2)利用配方法,結(jié)合函數(shù)的定義域,可求s,c的最小值及取最小值時x的值.
解答:解:(1)∵AE=BF=x∴BE=4-x,CF=3-x
s=12-
x(4-x)
2
=
x2
2
-2x+12

c=3+4+x+3-x+
x2+(4-x)2
=10+
2x2-8x+16

它們的定義域都是(0,3);
(2)s=
x2
2
-2x+12=
(x-2)2+20
2

∵x∈(0,3),∴當(dāng)x=2時,smin=10
c=10+
2(x-2)2+8

∵x∈(0,3),
∴當(dāng)x=2時,cmin=10+2
2
點評:本題考查函數(shù)模型的構(gòu)建,考查配方法求函數(shù)的最值,正確構(gòu)建函數(shù)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=
8
3
3
,BC=2,橢圓M的中心和準(zhǔn)線分別是已知矩形的中心和一組對邊所在直線,矩形的另一組對邊間的距離為橢圓的短軸長,橢圓M的離心率大于0.7.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求橢圓M的方程;
(II)過橢圓M的中心作直線l與橢圓交于P,Q兩點,設(shè)橢圓的右焦點為F2,當(dāng)∠PF2Q=
3
時,求△PF2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=1,AD=2,M為AD的中點,則
BM
BD
的值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A 若方程ax-x-a=0有兩個實數(shù)解,則a的取值范圍是
(1,+∞)
(1,+∞)

B 如圖,矩形ABCD中邊長AB=2,BC=1,E為BC的中點,若F為正方形內(nèi)(含邊界)任意一點,則
AE
AF
的最大值為
9
2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,將△ADE沿AE翻折到D'點,當(dāng)D'在平面ABC上的射影落在AE上時,四棱錐D'-ABCE的體積是
2
6
-
2
12
2
6
-
2
12
;當(dāng)D'在平面ABC上的射影落在AC上時,二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點,使
PQ
QD
,說明理由.
(2)問當(dāng)Q點惟一,且cos<
BP
,
QD
>=
10
10
時,求點P的位置.

查看答案和解析>>

同步練習(xí)冊答案