【題目】設(shè)函數(shù),曲線y=f(x)在點(diǎn)(1, f(1))處的切線方程為y=e(x-1)+2.
(1)求 (2)證明:
【答案】(I);(II)詳見(jiàn)解析.
【解析】試題分析:(1)根據(jù)求導(dǎo)法則求出原函數(shù)的導(dǎo)函數(shù),由某點(diǎn)的導(dǎo)數(shù)是在該點(diǎn)的切線的斜率,結(jié)合切線方程以及該點(diǎn)的函數(shù)值,將函數(shù)值和切線斜率代入原函數(shù)和導(dǎo)函數(shù)可求得參數(shù)值;(2)由(1 )可得的解析式, 為多項(xiàng)式,對(duì)要證的不等式進(jìn)行變形,使之成為兩個(gè)函數(shù)的大小關(guān)系式,再分別利用導(dǎo)函數(shù)求出兩函數(shù)在定義域內(nèi)的最值,可證得兩函數(shù)的大小關(guān)系,進(jìn)而證得.
試題解析:(1)函數(shù)的定義域?yàn)?/span>,
.
由題意可得, .故, .
(2)證明:由(1)知, ,
從而等價(jià)于.
設(shè)函數(shù),則.
所以當(dāng), ;
當(dāng)時(shí), .
故在上單調(diào)遞減, 上單調(diào)遞增,從而在上的最小值為.
設(shè)函數(shù),則.
所以當(dāng)時(shí), ;當(dāng)時(shí), .故在上單調(diào)遞增,在上單調(diào)遞減,從而在上的最大值為.
綜上,當(dāng)時(shí), ,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD=,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在和的人中共抽取6人,再?gòu)倪@6人中選2人,求2人服務(wù)次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(4, 0),B(2, 2),C (6, 0),記△ABC的外接圓為⊙P.
(1)求⊙P的方程.
(2)對(duì)于線段PA上的任意一點(diǎn)G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點(diǎn)E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),作了初步處理,得到下表:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 9 |
發(fā)芽率(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于26”的概率;
(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出關(guān)于的線性回歸方程,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程中的斜率和截距最小二乘法估計(jì)公式分別為:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,又平面,且,點(diǎn)在棱上,且.
(1)求異面直線與所成的角的大。
(2)求證:平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠有容量300噸的水塔一個(gè),每天從早六點(diǎn)到晚十點(diǎn)供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時(shí)10噸,工業(yè)用水總量(噸)與時(shí)間(單位:小時(shí),規(guī)定早晨六點(diǎn)時(shí))的函數(shù)關(guān)系為,水塔的進(jìn)水量有10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí), 進(jìn)水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時(shí)打開(kāi)進(jìn)水管.問(wèn)該天進(jìn)水量應(yīng)選擇幾級(jí),既能保證該廠用水(即水塔中水不空),又不會(huì)使水溢出?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題共13分)根據(jù)以往的成績(jī)記錄,甲、乙兩名隊(duì)員射擊擊中目標(biāo)靶的環(huán)數(shù)的頻率分布情況如圖所示
(1)求上圖中的值;
(2)甲隊(duì)員進(jìn)行一次射擊,求命中環(huán)數(shù)大于7環(huán)的概率(頻率當(dāng)作概率使用);
(3)由上圖判斷甲、乙兩名隊(duì)員中,哪一名隊(duì)員的射擊成績(jī)更穩(wěn)定(結(jié)論不需證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com