分析 通過對(duì)等式(n+1)an2+anan+1-nan+12=0因式分解可知(an+an+1)[(n+1)an-nan+1]=0,進(jìn)而(n+1)an-nan+1=0,變形可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,利用累乘法計(jì)算即得結(jié)論.
解答 解:∵(n+1)an2+anan+1-nan+12=0,
∴(an+an+1)[(n+1)an-nan+1]=0,
又∵an>0,即an+an+1>0,
∴(n+1)an-nan+1=0,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,
$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-1}{n-2}$,
…
$\frac{{a}_{2}}{{a}_{1}}$=$\frac{2}{1}$,
累乘得:$\frac{{a}_{n}}{{a}_{1}}$=n,
∴an=n•a1=2n,
∵當(dāng)n=1時(shí)滿足上式,
∴通項(xiàng)公式an=2n.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),利用因式分解、累乘法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com