【題目】已知奇函數(shù).
(1)求實數(shù)的值;
(2)判斷函數(shù)在其定義域上的單調(diào)性,并用定義證明;
(3)若對所有的恒成立,求實數(shù)的取值范圍.
【答案】(1)(2)函數(shù)是R上的增函數(shù),證明見解析(3)
【解析】
(1)根據(jù)奇函數(shù)性質(zhì),可知,代入即可求得的值.
(2)利用定義,,作差后,將整式變形后即可判斷符號,進(jìn)而判斷函數(shù)的單調(diào)性.
(3)根據(jù)奇函數(shù)的性質(zhì),結(jié)合單調(diào)遞增,即可將不等式變形為;結(jié)合輔助角公式及恒成立問題,解關(guān)于m的不等式組即可求得的取值范圍.
(1)若為奇函數(shù),
則,
解得.
(2)由(1)可知,.則是R上的增函數(shù).
證明:任取,
則
且
即
所以函數(shù)是R上的增函數(shù).
(3)若對所有的恒成立,
因為是奇函數(shù),
對所有的恒成立.
因為是R上的增函數(shù),
對所有的恒成立.
即對所有的恒成立.
利用輔助角公式變形可得
因為對所有的恒成立.
.
,
解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四名同學(xué)組成一個4100米接力隊,老師要安排他們四人的出場順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒.老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場順序中跑第三棒的人是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,已知A,a,b,給出下列說法:
①若,則此三角形最多有一解;
②若,且,則此三角形為直角三角形,且;
③當(dāng),且時,此三角形有兩解.
其中正確說法的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)的圖像關(guān)于直線對稱,且當(dāng)時,,過點作曲線的兩條切線,若這兩條切線互相垂直,則該函數(shù)的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點.若直與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)(為自然對數(shù)的底數(shù))時,求的極小值;
(2)討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,若不等式在時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如城鎮(zhèn)小汽車的普及率為75%,即平均每100個家庭有75個家庭擁有小汽車,若從如城鎮(zhèn)中任意選出5個家庭,則下列結(jié)論成立的是( )
A.這5個家庭均有小汽車的概率為
B.這5個家庭中,恰有三個家庭擁有小汽車的概率為
C.這5個家庭平均有3.75個家庭擁有小汽車
D.這5個家庭中,四個家庭以上(含四個家庭)擁有小汽車的概率為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com