【題目】某社團(tuán)有男生30名,女生20名,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生.有以下3種說法:

①該抽樣可能是簡單隨機(jī)抽樣;

②該抽樣不可能是分層隨機(jī)抽樣;

③該抽樣中,男生被抽到的概率大于女生被抽到的概率.

其中說法正確的為(

A.①②③B.①②C.②③D.①③

【答案】B

【解析】

根據(jù)抽樣方法的概念、概率的計(jì)算,再結(jié)合題意逐一判斷即可.

①因?yàn)榭傮w個(gè)數(shù)不多,可以對(duì)每個(gè)個(gè)體進(jìn)行編號(hào),所以該抽樣可能是簡單隨機(jī)抽樣,故①正確;

②若總體由差異明顯的幾部分組成,則采用分層隨機(jī)抽樣的方法進(jìn)行抽樣,且分層隨機(jī)抽樣的比例相同.但現(xiàn)在該社團(tuán)有男生30名,女生20名,抽到2名男生和3名女生,比例不同,故②正確;

③該抽樣中,男生被抽到的概率為,女生被抽到的概率為,故前者小于后者,因此③不正確.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)自然數(shù)。求證:全體不大于n的合數(shù)可重新排列(不一定按原來的大小順序排列),使得每三個(gè)依次相鄰的數(shù)都有大于1的公因數(shù)(例如,當(dāng)時(shí),排列就滿足要求)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的半長軸長為半徑的圓相切.

1)求橢圓C的方程;

2)設(shè)P為橢圓C上一點(diǎn),若過點(diǎn)的直線l與橢圓C相交于不同的兩點(diǎn)ST,滿足O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習(xí)俗,2020年春節(jié)前夕,A市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃,檢測其某項(xiàng)質(zhì)量指標(biāo).

1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

②將頻率視為概率,若某人從某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學(xué)期望.

附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為;

②若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有個(gè)零點(diǎn)

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有不正確結(jié)論的編號(hào)是(

A.①③④B.②③C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)的父親決定今年夏天賣西瓜賺錢,根據(jù)去年6月份的數(shù)據(jù)統(tǒng)計(jì)連續(xù)五天內(nèi)每天所賣西瓜的個(gè)數(shù)與溫度之間的關(guān)系如下表:

溫度

32

33

35

37

38

西瓜個(gè)數(shù)

20

22

24

30

34

(1)求這五天內(nèi)所賣西瓜個(gè)數(shù)的平均值和方差;

(2)求變量之間的線性回歸方程,并預(yù)測當(dāng)溫度為時(shí)所賣西瓜的個(gè)數(shù).

附:(精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).為自然對(duì)數(shù)的底數(shù))

1時(shí)求函數(shù)在點(diǎn)處的切線方程;

2)若,求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選)某中學(xué)高一年級(jí)有20個(gè)班,每班50人;高二年級(jí)有30個(gè)班,每班45.甲就讀于高一,乙就讀于高二.學(xué)校計(jì)劃從這兩個(gè)年級(jí)中共抽取235人進(jìn)行視力調(diào)查,下列說法中正確的有(

A.應(yīng)該采用分層隨機(jī)抽樣法

B.高一、高二年級(jí)應(yīng)分別抽取100人和135

C.乙被抽到的可能性比甲大

D.該問題中的總體是高一、高二年級(jí)的全體學(xué)生的視力

查看答案和解析>>

同步練習(xí)冊答案