點(diǎn)P(2cosα,
3
sinα)
(α∈R)與橢圓C:
x2
4
+
y2
3
=1
的位置關(guān)系是( 。
A.點(diǎn)P在橢圓C上
B.點(diǎn)P與橢圓C的位置關(guān)系不能確定,與α的取值有關(guān)
C.點(diǎn)P在橢圓C內(nèi)
D.點(diǎn)P在橢圓C外
把點(diǎn)P(2cosα,
3
sinα)
(α∈R)代入橢圓方程的左邊=
(2cosα)2
4
+
(
3
sinα)2
3
=cos2α+sin2α=1,滿(mǎn)足橢圓的方程C:
x2
4
+
y2
3
=1
,因此點(diǎn)P在橢圓上.
故選:A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD=
3
2
,BC=
1
2
.橢圓G以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.
(Ⅰ)建立適當(dāng)坐標(biāo)系,求橢圓G的方程;
(Ⅱ)若點(diǎn)E滿(mǎn)足
EC
=
1
2
AB
,問(wèn)是否存在不平行AB的直線l與橢圓G交于M、N兩點(diǎn)且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在焦點(diǎn)在x軸的橢圓過(guò)點(diǎn)P(3,0),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,則其標(biāo)準(zhǔn)方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

分別求適合下列條件的曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)為F1(0,-1)、F2(0,1)且過(guò)點(diǎn)M(
3
2
,1)橢圓;
(2)求經(jīng)過(guò)點(diǎn)A(0,4),B(4,6)且圓心在直線x-2y-2=0上的圓的方程;
(3)與雙曲線x2-
y2
2
=1有相同的漸近線,且過(guò)點(diǎn)(2,2)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知方程ax2+by2=ab和ax+by+c=0,其中,ab≠0,a≠b,c>0,它們所表示的曲線可能是下列圖象中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓C:
x2
a2
+
y2
2
=1(a>0)
的左右焦點(diǎn)分別為F1、F2,A是橢圓C上的一點(diǎn),且
AF2
F1F2
=0
,坐標(biāo)原點(diǎn)O到直線AF1的距離為
1
3
|OF1|

(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過(guò)點(diǎn)Q的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)M,若|MQ|=2|QF|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱(chēng)軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為
4
5
3
2
5
3
,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的右焦點(diǎn),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P為橢圓C:
x2
4
+
y2
3
=1上動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓C的焦點(diǎn),則|PF1|-|PF2|的最大值為(  )
A.2B.3C.2
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1(a>b>0)
,P為橢圓上的一點(diǎn),且滿(mǎn)足PF1⊥PF2
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為
3
2
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案