【題目】新冠肺炎疫情期間,為確保“停課不停學(xué)”,各校精心組織了線上教學(xué)活動(dòng).開學(xué)后,某校采用分層抽樣的方法從三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為150的樣本進(jìn)行關(guān)于線上教學(xué)實(shí)施情況的問卷調(diào)查.已知該校高一年級(jí)共有學(xué)生660人,抽取的樣本中高二年級(jí)有50人,高三年級(jí)有45人.下表是根據(jù)抽樣調(diào)查情況得到的高二學(xué)生日睡眠時(shí)間(單位:h)的頻率分布表.
分組 | 頻數(shù) | 頻率 |
5 | 0.10 | |
8 | 0.16 | |
x | 0.14 | |
12 | y | |
10 | 0.20 | |
z | ||
合計(jì) | 50 | 1 |
(1)求該校學(xué)生總數(shù);
(2)求頻率分布表中實(shí)數(shù)x,y,z的值;
(3)已知日睡眠時(shí)間在區(qū)間[6,6.5)的5名高二學(xué)生中,有2名女生,3名男生,若從中任選2人進(jìn)行面談,則選中的2人恰好為一男一女的概率.
【答案】(1)1800人;(2)7,0.24,8;(3).
【解析】
(1)根據(jù)高一年級(jí)學(xué)生抽樣比列出方程求解;(2)根據(jù)頻率、頻數(shù)與總數(shù)的關(guān)系計(jì)算;(3)列舉出5名高二學(xué)生中任選2人的所有可能結(jié)果,再確定2人中恰好為一男一女的可能,利用古典概型概率公式進(jìn)行求解.
(1)設(shè)該校學(xué)生總數(shù)為n,
由題意,解得n=1800,
所以該校學(xué)生總數(shù)為1800人.
(2)由題意,解得x=7,,
.
(3)記“選中的2人恰好為一男一女”為事件A,
記5名高二學(xué)生中女生為F1,F2,男生為M1,M2,M3,
從中任選2人有以下情況:(F1,F2),(F1,M1),(F1,M2),(F1,M3),(F2,M1),(F2,M2),(F2,M3),(M1,M2),(M1,M3),(M2,M3),
基本事件共有10個(gè),它們是等可能的,
事件A包含的基本事件有6個(gè),故P(A)==,
所以選中的2人恰好為一男一女的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)ae2x+(a﹣2) ex﹣x.
(1)討論的單調(diào)性;
(2)若有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和點(diǎn).
(1)過點(diǎn)向圓引切線,求切線的方程;
(2)求以點(diǎn)為圓心,且被直線截得的弦長(zhǎng)為8的圓的方程;
(3)設(shè)為(2)中圓上任意一點(diǎn),過點(diǎn)向圓引切線,切點(diǎn)為,試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo),并指出相應(yīng)的定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點(diǎn).
(1)求異面直線DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面, 底面為梯形, ,.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若是棱的中點(diǎn),求證:對(duì)于棱上任意一點(diǎn),與都不平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,﹣2),B(4,0),圓C經(jīng)過點(diǎn)(0,﹣1),(0,1)及(,0).斜率為k的直線l經(jīng)過點(diǎn)B.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)k=2時(shí),過直線l上的一點(diǎn)P向圓C引一條切線,切點(diǎn)為Q,且滿足PQ=,求點(diǎn)P的坐標(biāo);
(3)設(shè)M,N是圓C上任意兩個(gè)不同的點(diǎn),若以MN為直徑的圓與直線l都沒有公共點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校書法興趣組有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書法比賽每人被選到的可能性相同.
用表中字母列舉出所有可能的結(jié)果;
設(shè)M為事件“選出的2人來自不同年級(jí)且性別相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角坐標(biāo)系的原點(diǎn)和極坐標(biāo)系的極點(diǎn)重合,軸非負(fù)半軸與極軸重合, 單位長(zhǎng)度相同, 在直角坐標(biāo)系下, 曲線的參數(shù)方程為,為參數(shù)) .
(1) 寫出曲線的極坐標(biāo)方程;
(2) 直線的極坐標(biāo)方程為,求曲線與直線在平面直角坐標(biāo)系中的交點(diǎn)坐標(biāo) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com