【題目】在四棱錐中,平面平面, 底面為梯形, ,.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)若是棱的中點(diǎn),求證:對(duì)于棱上任意一點(diǎn),都不平行

【答案】(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)見證明

【解析】

Ⅰ)利用線面平行判定定理即可證明AB∥平面PCD

(Ⅱ)法一:利用面面垂直的性質(zhì)即可證明AD⊥平面PCD.法二:在平面PCD中過點(diǎn)DDHCD,交PCH,利用面面垂直的性質(zhì)可證DH⊥平面ABCD,進(jìn)而利用線面垂直的性質(zhì)可證DHAD,再根據(jù)線面垂直的判定定理即可證明AD⊥平面PCD

(Ⅲ)法一:假設(shè)存在棱BC上點(diǎn)F,使得MFPC,連接AC,取其中點(diǎn)N,有MNPC,即可證明MFMN重合,即MF就是MC,由MCPC相交,矛盾,即可問題得證.法二:假設(shè)存在棱BC上點(diǎn)F,使得MFPC,顯然F與點(diǎn)C不同,可得P,MF,C四點(diǎn)在同一個(gè)平面α中,即BFCαAPMα,α就是點(diǎn)A,B,C確定的平面ABCD,且P∈α,這與PABCD為四棱錐矛盾,即可得解假設(shè)錯(cuò)誤,問題得證.

(Ⅰ)因?yàn)?/span>

平面

平面

所以平面

(Ⅱ)法一:

因?yàn)槠矫?/span>平面

平面平面

,平面

所以平面

法二:

在平面中過點(diǎn),交

因?yàn)槠矫?/span>平面

平面平面

平面

所以平面

因?yàn)?/span>平面

所以

所以平面

(Ⅲ)法一:

假設(shè)存在棱上點(diǎn),使得

連接,取其中點(diǎn)

中,因?yàn)?/span>分別為的中點(diǎn),所以

因?yàn)檫^直線外一點(diǎn)只有一條直線和已知直線平行,所以重合

所以點(diǎn)在線段上,所以,的交點(diǎn)

就是

相交,矛盾,所以假設(shè)錯(cuò)誤,問題得證

法二:

假設(shè)存在棱上點(diǎn),使得,顯然與點(diǎn)不同

所以四點(diǎn)在同一個(gè)平面

所以 ,

所以 ,

所以就是點(diǎn)確定的平面 ,且

這與為四棱錐矛盾,所以假設(shè)錯(cuò)誤,問題得證

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).

1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.

比較隨機(jī)變量的數(shù)學(xué)期望的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視引進(jìn)德國節(jié)目《SuperBrain》而推出的大型科學(xué)競技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對(duì)空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測試成績是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80.

1)根據(jù)題意,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為腦力測試后是否為“入圍學(xué)生”與性別有關(guān);

性別

入圍人數(shù)

未入圍人數(shù)

總計(jì)

男生

24

女生

80

總計(jì)

2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,然后再從這11名學(xué)生中抽取3名參加某期《最強(qiáng)大腦》,設(shè)抽到的3名學(xué)生中女生的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l13xy10l2x2y50,l3xay30不能圍成三角形,則實(shí)數(shù)a的取值可能為(

A.1B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,為確保停課不停學(xué),各校精心組織了線上教學(xué)活動(dòng).開學(xué)后,某校采用分層抽樣的方法從三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為150的樣本進(jìn)行關(guān)于線上教學(xué)實(shí)施情況的問卷調(diào)查.已知該校高一年級(jí)共有學(xué)生660人,抽取的樣本中高二年級(jí)有50人,高三年級(jí)有45人.下表是根據(jù)抽樣調(diào)查情況得到的高二學(xué)生日睡眠時(shí)間(單位:h)的頻率分布表.

分組

頻數(shù)

頻率

5

0.10

8

0.16

x

0.14

12

y

10

0.20

z

合計(jì)

50

1

1)求該校學(xué)生總數(shù);

2)求頻率分布表中實(shí)數(shù)x,yz的值;

3)已知日睡眠時(shí)間在區(qū)間[6,6.5)5名高二學(xué)生中,有2名女生,3名男生,若從中任選2人進(jìn)行面談,則選中的2人恰好為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù),當(dāng)時(shí),若的唯一極值點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對(duì)他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:

每月完成合格產(chǎn)品的件數(shù)(單位:百件)

頻數(shù)

10

45

35

6

4

男員工人數(shù)

7

23

18

1

1

(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評(píng)為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?

非“生產(chǎn)能手”

“生產(chǎn)能手”

合計(jì)

男員工

女員工

合計(jì)

(2)為提高員工勞動(dòng)的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)設(shè),若曲線,有公共點(diǎn),且在點(diǎn)處的切線相同,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案