【題目】已知橢圓 的左、右焦點分別為F1、F2 , 短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明: 為定值.
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】
(1)解:a=2,b=c,a2=b2+c2,∴b2=2;
∴橢圓方程為
(2)解:C(﹣2,0),D(2,0),設M(2,y0),P(x1,y1),
則
直線CM: ,代入橢圓方程x2+2y2=4,
得
∵x1=﹣ ,∴ ,∴ ,∴
∴ (定值)
(3)解:設存在Q(m,0)滿足條件,則MQ⊥DP
則由 ,從而得m=0
∴存在Q(0,0)滿足條件
【解析】(1)由題意知a=2,b=c,b2=2,由此可知橢圓方程為 .(2)設M(2,y0),P(x1 , y1),則 ,直線CM: ,代入橢圓方程x2+2y2=4,得 ,然后利用根與系數(shù)的關系能夠推導出 為定值.(3)設存在Q(m,0)滿足條件,則MQ⊥DP. ,再由 ,由此可知存在Q(0,0)滿足條件.
【考點精析】利用橢圓的標準方程對題目進行判斷即可得到答案,需要熟知橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,下列條件:
①∠B+∠DAC=90°,
②∠B=∠DAC,
③,
④AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有( )
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過一番瀏覽后,對該店鋪中的A,B,C三種商品有購買意向.已知該網(wǎng)民購買A種商品的概率為 ,購買B種商品的槪率為 ,購買C種商品的概率為 .假設該網(wǎng)民是否購買這三種商品相互獨立
(1)求該網(wǎng)民至少購買2種商品的概率;
(2)用隨機變量η表示該網(wǎng)民購買商品的種數(shù),求η的槪率分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, 分別是橢圓: ()的左、右焦點,離心率為, , 分別是橢圓的上、下頂點, .
(1)求橢圓的方程;
(2)過作直線與交于, 兩點,求三角形面積的最大值(是坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一,他的杰作《九章算術注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學遺產(chǎn). 《九章算術·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,.
(1)求數(shù)列的通項公式;
(2)設是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年,電商行業(yè)的蓬勃發(fā)展也帶動了快遞業(yè)的高速發(fā)展.某快遞配送站每天至少要完成1800件包裹的配送任務,該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進行配送.已知每個新手快遞員每天可配送240件包裹,日工資320元;每個老快遞員每天可配送300件包裹,日工資520元.
(1)求該配送站每天需支付快遞員的總工資最小值;
(2)該配送站規(guī)定:新手快遞員某個月被評為“優(yōu)秀”,則其下個月的日工資比這個月提高12%.那么新手快遞員至少連續(xù)幾個月被評為“優(yōu)秀”,日工資會超過老快遞員?
(參考數(shù)據(jù): , , .)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com