已知三棱錐S-ABC,G
1,G
2分別為△SAB,△SAC的重心,則G
1G
2與△SBC,△ABC所在平面的位置關系是 ( )
試題分析:根據(jù)題意,由于三棱錐S-ABC,G1,G2分別為△SAB,△SAC的重心,則G1G2與△SBC,△ABC所在平面的位置關系是,利用中位線性質定理,可知線線平行,得到線面平行,選B.
點評:主要是考查了線面平行的判定,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
為菱形,其中
,
,
為
的中點.
(1) 求證:
;
(2) 若平面
平面
,且
為
的中點,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖:點
在正方體
的面對角線
上運動,則下列四個命題:
①三棱錐
的體積不變;
②
∥面
;
③
;
④面
⊥面
.
其中正確的命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
、
是兩條不同的直線,
、
是兩個不同的平面,給出下列結論:
①
∥
,
⇒
∥
;
②
∥
,
∥
,
⇒
∥
;
③
=
,
∥
,
∥
⇒
∥
;
④
∥
,
⇒
∥
.
其中正確的有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是兩個互相垂直的平面,
是一對異面直線,下列五個結論:
(1)
,
(2)
(3)
(4)
(5)
。其中能得到
的結論有
(把所有滿足條件的序號都填上)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知三棱錐
的側棱
兩兩垂直,且
,
,
是
的中點.
(1)求異面直線
與
所成的角的余弦值
(2)求二面角
的余弦值
(3)
點到面
的距離
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在等腰梯形
中,
,
,
,
是
的中點.將梯形
繞
旋轉
,得到梯形
(如圖).
(1)求證:
平面
;
(2)求證:
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.
(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
與棱長為1的正方體的一條棱平行的截面中,面積最大的截面面積為 .
查看答案和解析>>