13.已知圓錐的母線長為8,底面周長為6π,則它的體積為3$\sqrt{55}$π.

分析 圓錐的底面周長,求出底面半徑,然后求出圓錐的高,即可求出圓錐的體積.

解答 解:∵圓錐的底面周長為6π,
∴圓錐的底面半徑r=3;
雙∵圓錐的母線長l=8,
圓錐的高h=$\sqrt{64-9}$=$\sqrt{55}$
所以圓錐的體積V=$\frac{1}{3}π{r}^{2}h$=3$\sqrt{55}$π,
故答案為3$\sqrt{55}$π.

點評 本題是基礎題,考查計算能力,圓錐的高的求法,底面半徑的求法,是必得分的題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,則f[f(x)]=$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設min{p,q,r}為表示p,q,r三者中較小的一個,若函數(shù)f(x)=min{x+1,-2x+7,x2-x+1},且函數(shù)f(x)的圖象與直線y=m有四個交點,則m的取值范圍是( 。
A.[$\frac{3}{4}$,1]B.[$\frac{3}{4}$,1)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(λ+1,1),$\overrightarrow$=(λ+2,2),若($\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+$\overrightarrow$),則實數(shù)λ=( 。
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知{an}是等比數(shù)列,a2=2,a5=$\frac{1}{4}$,則a1a2+a2a3+…+anan+1=( 。
A.16(1-4-nB.16(1-2-nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.給出下列四個函數(shù),在(0,+∞)為增函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=(x-1)2C.y=2-xD.y=log2(x+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合M={x|x2>4},N={-3,-2,2,3,4},則M∩N=( 。
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.△ABC中,若三個角∠A、∠B、∠C及其所對的邊a,b,c均成等差數(shù)列,△ABC的面積為4$\sqrt{3}$,且∠B=$\frac{π}{3}$,那么b=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(-2,0),且被圓C1截得的弦長為2$\sqrt{3}$,求直線l的方程;
(II)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標.

查看答案和解析>>

同步練習冊答案