4.點(diǎn)A(-1,0)和點(diǎn)B(1,1)在直線x+y-a=0的兩側(cè),則a的取值范圍是( 。
A.-2<a<1B.a<-2或a>1C.-1<a<2D.a<-1或a>2

分析 點(diǎn)A(-1,0)和點(diǎn)B(1,1)在直線x+y-a=0的兩側(cè),可得(-1+0-a)(1+1-a)<0,解出即可得出.

解答 解:∵點(diǎn)A(-1,0)和點(diǎn)B(1,1)在直線x+y-a=0的兩側(cè),
∴(-1+0-a)(1+1-a)<0,
化為(a+1)(a-2)<0,
解得-1<a<2,
故選:C.

點(diǎn)評(píng) 本題考查了線性規(guī)劃的應(yīng)用、一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定積分$\int_1^e{({\frac{1}{x}+{e^x}})}$dx=ee-e+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)與g(x)的對應(yīng)關(guān)系如表
x-101
f(x)132
x123
g(x)0-11
則g[f(-1)]的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{AB}=({2,1})$,$\overrightarrow{CD}=({5,5})$,則$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影為( 。
A.$\frac{{-3\sqrt{2}}}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{{3\sqrt{15}}}{2}$D.$\frac{{-3\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了得到函數(shù)$y=\sqrt{2}cos3x$的圖象,可以將函數(shù)y=$\sqrt{2}$cos$\frac{3}{2}$x的圖象所有點(diǎn)的( 。
A.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變)得到
C.縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到
D.縱坐標(biāo)縮短到原來的$\frac{1}{2}$(橫坐標(biāo)不變)得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前項(xiàng)n和為Sn,滿足Sn=n2+3n+2(n∈N+
(1)求an;   
(2)求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的首項(xiàng)a1=$\frac{1}{4}$的等比數(shù)列,其前n項(xiàng)和Sn中S3=$\frac{3}{16}$,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log${\;}_{\frac{1}{2}}$|an|,Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在(-∞,+∞)上的函數(shù)f(x)是奇函數(shù),且f(2-x)=f(x),則f(2010)值為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=2x3-6x2+7在[-1,2]上的最大值是7.

查看答案和解析>>

同步練習(xí)冊答案