【題目】已知x∈R,[x]表示不超過x的最大整數(shù),若函數(shù) 有且僅有3個零點,則實數(shù)a的取值范圍是.
【答案】
【解析】解:由 得 =2a, ①若x>0,設g(x)= ,
則當0<x<1,[x]=0,此時g(x)=0,
當1≤x<2,[x]=1,此時g(x)= ,此時 <g(x)≤1,
當2≤x<3,[x]=2,此時g(x)= ,此時 <g(x)≤1,
當3≤x<4,[x]=3,此時g(x)= ,此時 <g(x)≤1,
當4≤x<5,[x]=4,此時g(x)= ,此時 <g(x)≤1,
作出函數(shù)g(x)的圖象,
要使 有且僅有三個零點,
即函數(shù)g(x)=2a有且僅有三個零點,
則由圖象可知 <a≤ ,
②若x<0,設g(x)= ,
則當﹣1≤x<0,[x]=﹣1,此時g(x)=﹣ ,此時g(x)≥1,
當﹣2≤x<﹣1,[x]=﹣2,此時g(x)=﹣ ,此時1≤g(x)<2,
當﹣3≤x<﹣2,[x]=﹣3,此時g(x)=﹣ ,此時1≤g(x)< ,
當﹣4≤x<﹣3,[x]=﹣4,此時g(x)=﹣ ,此時1≤g(x)< ,
當﹣5≤x<﹣4,[x]=﹣5,此時g(x)=﹣ ,此時1≤g(x)< ,
作出函數(shù)g(x)的圖象,
要使 有且僅有三個零點,
即函數(shù)g(x)=2a有且僅有三個零點,
則由圖象可知 ≤a< ,
綜上: <a≤ 或 ≤a< ,
所以答案是: .
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的零點與方程根的關(guān)系的相關(guān)知識,掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+a.
(1)若對任意的實數(shù)x都有f(1+x)=f(1﹣x)成立,求實數(shù)a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(3)當x∈[﹣1,1]時,求函數(shù)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, , .
(Ⅰ)求數(shù)列, 的通項公式;
(Ⅱ)若數(shù)列滿足, ,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若不等式|2x﹣1|﹣|x+a|≥a對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=sin2x的圖象,只要將y=sin(2x+ )函數(shù)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com