設(shè)函數(shù)fn(x)=-2n+
2
x
+
22
x2
+…+
2n
xn

(1)求函數(shù)f2(x)在
1,2
上的值域;
(2)證明對(duì)于每一個(gè)n∈N*,在
1,2
上存在唯一的xn,使得fn(xn)=0;
(3)求f1(a)+f2(a)+…+fn(a)的值.
分析:(1)利用換元法,轉(zhuǎn)化為二次函數(shù),利用函數(shù)的單調(diào)性,即可求出函數(shù)f2(x)在
1,2
上的值域;
(2)證明fn(x)=-2n+
2
x
+
22
x2
+…+
2n
xn
,在x∈
1,2
上單調(diào)遞減,再證明fn(2)<0,即可得到結(jié)論;
(3)fm(a)=-2m+
2
a
+
22
a2
+…+
2m
am
,對(duì)a討論,利用等比數(shù)列的求和公式,即可求f1(a)+f2(a)+…+fn(a)的值.
解答:(1)解:f2(x)=-4+
2
x
+
4
x2
,
x∈
1,2
,令t=
1
x
1
2
,1
,則y=4t2+2t-4.
對(duì)稱(chēng)軸t=-
1
4
,∴y=4t2+2t-4在
1
2
,1
上單調(diào)遞增,∴f2(x)在
1,2
上的值域?yàn)?span id="buieyyr" class="MathJye">
-2.2
.…(4分)
(2)證明:∵對(duì)于1≤x1<x2≤2,m∈N*1≤
x
m
1
x
m
2
,
1
x
m
2
1
x
m
1
,從而
2m
x
m
2
2m
x
m
1
,∴y=
2m
xm
,m∈N*,在x∈
1,2
上單調(diào)遞減,
fn(x)=-2n+
2
x
+
22
x2
+…+
2n
xn
,在x∈
1,2
上單調(diào)遞減.
fn(1)=-2n+2+22+…+2n=2n-2≥0,fn(2)=-2n+n.…(7分)
當(dāng)n≥2時(shí),fn(2)=-2n+n=-(1+1)n+n=-
C
0
n
-
C
1
n
-
C
2
n
-…-
C
n
n
+n<0
,
又f1(2)=-2+1=-1<0,即對(duì)于任意自然數(shù)n有fn(2)=-2n+n<0
∴對(duì)于每一個(gè)n∈N*,存在唯一的xn
1,2
,使得fn(xn)=0…(11分)
(3)解:fm(a)=-2m+
2
a
+
22
a2
+…+
2m
am

當(dāng)a=2時(shí),fm(a)=-2m+m,∴f1(a)+f2(a)+…+fn(a)=-2n+1+
n(n+1)
2
+2
.…(14分)
當(dāng)a≠2且a≠0時(shí),fm(a)=-2m+
2
a
+
22
a2
+…+
2m
am
=-2m+
2
a
[1-(
2
a
)
m
]
1-
2
a

f1(a)+f2(a)+…+fn(a)=-2n+1+2+
2n
a-2
-
4
(a-2)2
+
2n+2
(a-2)2an
…(18分)
點(diǎn)評(píng):本題考查函數(shù)的值域,考查數(shù)列知識(shí)的運(yùn)用,考查等比數(shù)列的求和公式,考查分類(lèi)討論的數(shù)學(xué)思想,考查學(xué)生分析轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=xn+x-1,其中n∈N*,且n≥2,給出下列三個(gè)結(jié)論:
①函數(shù)f2(x)在區(qū)間(
1
2
,  1
)內(nèi)不存在零點(diǎn);
②函數(shù)f3(x)在區(qū)間(
1
2
,  1
)內(nèi)存在唯一零點(diǎn);
③?n∈N*,且n≥4,函數(shù)fn(x)在區(qū)間(
1
2
,  1)
內(nèi)存在零點(diǎn).
其中所有正確結(jié)論的序號(hào)為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)設(shè)函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)設(shè)n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
12
,1)
內(nèi)存在唯一的零點(diǎn);
(2)設(shè)n為偶數(shù),|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)設(shè)n=2,若對(duì)任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城二模)設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對(duì)任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
12
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=xn(1-x)2[
12
,1]
上的最大值為an(n∈N+).
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(Ⅰ)當(dāng)b>0時(shí),判斷函數(shù)fn(x)在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
12
,1)
內(nèi)存在唯一的零點(diǎn);
(Ⅲ)設(shè)n=2,若對(duì)任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案