若l為一條直線,α,β,γ為三個(gè)互不重合的平面,給出下面三個(gè)命題:
①α⊥γ,β⊥γ,則α∥β;
②α⊥γ,β∥γ,則α⊥β;
③l∥α,l⊥β,則α⊥β.
其中正確的命題有(  )
分析:①利用面面平行的性質(zhì)判斷.②利用面面垂直的性質(zhì)判斷.③利用線面平行和垂直的性質(zhì)判斷.
解答:解:①根據(jù)面面垂直的性質(zhì)可知,垂直于同一個(gè)平面的兩個(gè)平面不一定平行,所以①錯(cuò)誤.
②根據(jù)若一個(gè)平面垂直于兩個(gè)平行平面中的一個(gè)平面,則必垂直于另一個(gè)平面,所以②正確.
③由l∥β,可以知道過(guò)l的平面與β相交,設(shè)交線為m,則l∥m,又l⊥α,所以m⊥α,m?β,故α⊥β,所以③正確.
所以正確的命題有兩個(gè).
故選C.
點(diǎn)評(píng):本題考查線面平行的性質(zhì)定理、線面垂直的判定定理、面面垂直的判定定理,解答時(shí)要注意判定定理與性質(zhì)定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、若l為一條直線,α、β、γ為三個(gè)互不重合的平面,給出下面三個(gè)命題:①α⊥γ,β⊥γ?α⊥β;②α⊥γ,β∥γ?α⊥β;③l∥α,l⊥β?α⊥β.其中正確的命題有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、若l為一條直線,α,β,γ為三個(gè)互不重合的平面,給出下面四個(gè)命題:①α⊥γ,β⊥γ,則α⊥β;②α⊥γ,β∥γ,則α⊥β;③l∥α,l⊥β,則α⊥β.④若l∥α,則l平行于α內(nèi)的所有直線.其中正確命題的序號(hào)是
②③
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若l為一條直線,α,β,γ為三個(gè)互不重合的平面,給出的下面四個(gè)命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若l為一條直線,α,β,γ為三個(gè)互不重合的平面,給出下面三個(gè)命題:①l∥α,l∥β,則α∥β;  ②α⊥γ,β∥γ,則α⊥β;③l∥α,l⊥β,則α⊥β.④α⊥β,l∥α,則l⊥β.其中正確的命題有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案